				ANIDA	TO TIN	H / D O I D	T 7					
GANPAT UNIVERSITY FACULTY OF ENGINEERING & TECHNOLOGY												
					NEEF							
Programme Bachelor of Technology						Branch/Spec.	Computer Information Computer Intelligen					
Semester		VIII			Version	1.0.0.0						
Effective from Academic Year 2025-26						Effective for the	ne Batch ad	July 2022				
Course Co	ode	2CEIT8P	E6 Co	ırse Nan	Video Analytics							
Teaching					Examination S	, ,	rks) SEE					
(Per week)	/	ure (DT)	Practical		Total		CE	Total				
	L	TU	P	TW								
Credit	2	-	1	-	3	Theory	40	60	100			
Hours	2		2		4	Practical	30	20	50			
Pre-requisites												
Mathematics, Algorithms												
Course Outcomes												
	On successful completion of the course, the students will be able to:											
mo	Explain key concepts of video analytics, spatial and frequency domain processing, background modelling, and object detection techniques.											
Pa	Utilize feature extraction techniques (SIFT, Harris, STIP) and tracking algorithms (Kalman Filters, Particle Filters, Bayesian Filters) for motion estimation and object recognition.											
	Implement motion estimation techniques (Optical Flow, Block Matching) and advanced segmentation methods (Watershed, GraphCut, UNets, FCN) for video processing.											
	Design and implement solutions for video surveillance, face recognition, action recognition,											
	intelligent transport systems using advanced tracking and classification techniques.											
	Theory Syllabus											
Unit	Content											
	Introduction: Video Analytics. Computer Vision: Challenges- Spatial Domain Processing –											
	Frequency Domain Processing-Background Modeling-Shadow Detection-											
	Eigen Faces - Object Detection -Local Features-Mean Shift: Clustering. Computer Vision, Spatial/ Frequency Domain Processing, Background Modeling.											
	Understanding Features and Tracking: Features Local Features (Harris/SIFT/KB/STIP),											
	Object Detection and Recognition (Eigen Faces, Sparse Representation), Face Detection and											
	Recognition, Tracking - Object											
	Tracking using Active Contours – Tracking & Video Analysis: Tracking and Motion											
	Understanding – Kalman filters, condensation, particle, Bayesian filters, hidden Markov, models, change detection and model based tracking. Motion estimation and											
	Markov models, change detection and model based tracking- Motion estimation and											
	Compensation-Block Matching Method. Motion estimation and Tracking: Hierarchical Block Matching, Overlapped Block Motion 08											
	and compensation-Recursive Motion Estimation, Mesh Based Method, Optical Flow Method											
	- Motion Segmentation - Thresholding for Change Detection, Estimation of Model parameters											
	- Optical Flow Segmentation-Modified Hough Transform Method- Segmentation for Layered											
Vi	Video Representation-Bayesian Segmentation -Simultaneous Estimation and Segmentation-											
	Motion Field Model, Segmentation (Unsupervised: Watershed, Level set, Active Contour,											
			ation (Sup s, FCN), M			nerative cluster	ing, Segme	entation as pix	kel			
						king, Action Rec	cognition - I	Low Level Ima	ge 08			
						tion and Extrac						
	_		_		-			•				
	Structure from Motion - Action Representation Approaches: Classification of Various Dimension of Representation, View Invariant Methods, Gesture Recognition and Analysis,											
Ac	Action Segmentation. Case Study: Face Detection and Recognition, Natural Scene Videos,											
	Crowd Analysis, Video Surveillance, Traffic Monitoring, Intelligent Transport System.											
		alysis, Vid	eo Surveii	iance, ir	arme Mic	onitoring, Intelli	gent Transp	ort System.				
Practical C	Content					onitoring, Intelligove syllabus.	gent Transp	ort System.				

Text Books						
1	Video Processing and Communications by Yao Wang, Jorn Ostermann and Ya-Qin Zhang,, Prentice					
	Hall.					
2	The Essential Guide to Video Processing by Alan C Bovik, Academic Press					
3	Digital image processing by Gonzalez, R. C, Pearson education India.					
4	Computer Vision: Algorithms and Applications by Richard Szeliski					
Reference Books						
1	Introductory Techniques for 3D Computer Vision by Emanuele Trucco and Alessandro Verri,					
	Pearson.					
2	Computer Vision by D. H. Ballard and C. M. Brown, Prentice Hall.					
3	Programming Computer Vision with Python by Jan Erik Solem, Shroff Publisher/O'Reilly					
	Publisher.					
ICT/N	ICT/MOOCs Reference					
1	https://nptel.ac.in/courses/106/105/106105216/					
2	https://nptel.ac.in/courses/108/103/108103174/					

Mapping of CO with PO and PSO:															
	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 1 0	P O 1 1	P O 1 2	P S O 1	P S O 2	P S O 3
CO1	3	2	1	1	2	1	1	1	1	0	0	2	3	2	2
CO2	3	3	3	2	3	2	1	1	2	0	1	3	3	3	3
CO3	3	3	3	3	3	2	1	1	2	1	1	3	3	3	3
CO4	2	2	3	3	3	3	2	2	3	2	3	3	2	3	3