GANPAT UNIVERSITY												
FACULTY OF ENGINEERING & TECHNOLOGY												
Programme Master of Technology						Branch/Spec. Computer Engineering (Artificial Intelligence)						
Semester II							Version	1.0.0.0				
Effective from Academic Year 2025-26							Effective for the Batch admitted in July 2025					
Subject	t code	3	CEAIPE 1	107	Subject Nan	Reinforcement Learning						
Teachir	ng schen	ne				Examination scheme (Marks)						
(Per week) Lec			re (DT)	Pra	actical (Lab.) Total			CE	SEE	Tot	al	
]		L	TU	P	TW							
Credit		3	-	1	-	4	Theory	50	50	10	0	
Hours		3	-	2	-	5	Practical	30	20	50)	
Pre-requisites												
Artificial Intelligence, Probability												
Course Outcomes												
On successful completion of the course, the students will be able to:												
CO1	Get knowledge of basic and advanced reinforcement learning techniques.											
CO2	Identify suitable learning tasks to which learning techniques can be applied.											
CO3	Get kno	Get knowledge of some of the current limitations of reinforcement learning techniques.										
CO4	Design, implement and apply novel AI techniques based on emerging real-world requirements. Model a control task in the framework of MDPs											
Theory	neory syllabus											
Unit	Ī					Cor	ntent				Hrs.	
1	Introduction to RL and Immediate RL: RL framework and applications, Introduction to immediate RL, Bandit optimality, Value function-based methods											
2	Probability Primer: Brush up of Probability concepts - Axioms of probability, concepts of random variables, PMF, PDFs, CDFs, Expectation, Concepts of joint and multiple random variables, joint, conditional and marginal distributions, Correlation and independence											
3	Bandit Algorithms: UCB 1, Concentration bounds, UCB 1 Theorem, PAC bounds, Median elimination, Thompson sampling											
4	Policy Gradient Methods & Introduction to Full RL: Policy search, REINFORCE, Contextual bandits, Full RL introduction, Returns, value functions & MDPs											
5	MDP Formulation, Bellman Equations & Optimality Proofs: MDP modelling, Bellman equation, Bellman optimality equation, Cauchy sequence & Green's equation, Banach fixed point theorem, Convergence proof											
6	Monte Carlo Methods: LPI convergence, Value iteration, Policy iteration, Dynamic programming, Monte Carlo, Control in Monte Carlo, Off Policy MC, UCT, TD(0), TD(0) control, Q-learning											
7	Eligibility Traces: Eligibility traces, Backward view of eligibility traces, Eligibility trace control, Thompson sampling recap											
8	Function Approximation: Function approximation, Linear parameterization, State aggregation methods, Function approximation & eligibility traces, LSTD & LSTDQ, LSPI & Fitted Q											
9	9 DQN, Fitted Q & Policy Gradient Approaches: DQN & Fitted Q-iteration, Policy gradient approach, Actor critic & REINFORCE, Policy gradient with function approximation											
Practical content Practical content												
Practicals, assignments and tutorials are based on the above syllabus.												
Text Books												
1 Introduction to Reinforcement learning by Richard S. Sutton and Andrew G. Barto, MIT press.												
Reference Books												
Deep Learning by Ian Goodfellow and Yoshua Bengio and Aaron Courville, MIT Press.												
	12 44 L	2 vol 11111		_ J J G G		D		com vino,				

2 Stochastic Approximation: A Dynamical Systems Viewpoint by V. S. Borkar, Hindustan Book Agency ICT/MOOCs Reference
1 https://nptel.ac.in/courses/106/106/106106143/

Mapping of CO with PO and PSO:														
	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	PSO 1	PSO 2	PSO 3
CO1	3	2	1	1	1	0	1	0	1	0	1	3	1	1
CO2	3	3	1	2	1	0	2	0	2	0	1	1	2	1
CO3	3	3	1	1	1	0	1	0	2	0	1	1	1	1
CO4	3	3	3	3	3	0	3	0	2	0	2	3	3	3