GANPATUNIVERSITY												
FACULTYOFENGINEERING&TECHNOLOGY												
Programme		Bachelor of Technology				Branch/Spe	c. Pet	/ Chemical				
α .				TIT		X7 ·		1.04	2.1			
Semester				III		Version		0.1				
Effective f	demic Year 2025-26			Effective for the batch Admitted in July 2025								
Course code		2BS3	3106	Course	Name	Mathen	Engineering					
	T	eaching:	scheme		Examination scheme(Marks)							
(Per Week)	Lectu	re (DT) Prac		tical (Lab.) Tota			CE	SEE	Total			
	L	TU	P	TW								
Credit	3	1	0	0	4	Theory	40	60	100			
Hours	3	1	0	0	4	Practical	0	0	0			

Pre-requisites:

Basic knowledge of Differentiation, Integration and Differential Equations

Course Outcome:

- CO1: Express physical phenomenon in Laplace Transforms and Z-Transforms.
- CO2: Solve first order non-linear and higher order linear partial differential equations.
- CO3: Apply knowledge of complex variables to cater various problems related the branch.

Theory s	Theory syllabus								
Unit	Content								
1	Laplace Transforms Important Formulae, Properties of Laplace Transforms, Laplace Transform of Unit Step Function, Impulse Function, Periodic Function, Dirac Delta Function, Bessel Function, Error Function, Inverse Laplace Transforms, Important Formulae of Inverse Laplace Transforms, Properties of Inverse Laplace Transforms, Partial fraction method for Inverse Laplace Transforms, Convolution Theorem, Solutions of ordinary differential equations, simultaneous ordinary differential equations, partial differential equations and evaluation of Integrals using Laplace Transform method	10							
2	Z-Transforms: Properties of Z-Transforms, Inverse Z-Transforms, Convolution, Convolution property of casual sequence, transforms of important sequences, Inverse of Z, Transforms by division, solutions of difference equations.	07							
3	Partial Differential Equations: Solution of first order linear and non-linear Partial Differential Equations, Solution of higher order linear homogeneous Partial Differential Equations and linear non-homogeneous Partial Differential Equations.	06							
4	Applications of Partial Differential Equations Method of separation of variables for Partial Differential Equations and its use in solving the Partial Differential Equations representing (i)One dimensional wave equation, (ii)One dimensional heat conduction equation in Cartesian co-ordinates and polar co-ordinates and (iii)Two-dimensional steady state heat conduction equation.	10							
5	Numerical solution of Partial Differential Equations: Numerical solution of parabolic, elliptic and hyperbolic Partial Differential Equations using finite difference technique	05							

6	Calculus of Functions of Complex variables Analytic functions, Cauchy –Riemann													07	
	conditions in Cartesian co-ordinates and polar co-ordinates, methods for finding conjugate													te	
	fun	functions, Integration of function of complex variables, Cauchy's integral theorem and												nd	
	integral formula, Residue theorem and its use for evaluating Integrals of function of complex												ex		
	variables, evaluation real definite integrals by contour integration; Conformal												al		
	trar	transformations and bilinear transformations.													
Text Books:															
1.	Advanced Engineering Mathematics by H. K. Das														
2.	АТ	A Text Book of Engineering Mathematics by N. P. Bali, Manish Goyal													
Reference Books:															
1.	Hig	Higher Engineering Mathematics by B. S. Grewal													
2.	Higher Engineering Mathematics by B. V. Ramana														
ICT/MOOCS:															
1.	https://nptel.ac.in/courses/111105035/222.														
2.	https://nptel.ac.in/courses/111105035/273.														
3.	https://nptel.ac.in/courses/111105035/30														
Mapping of CO-PO and CO-PSO:															
	1	20	3	4	5	90	7.	∞	6	10	11	12)1	32)3
	P01	P02	P03	PO4	PO	90d	P07	P08	P09	PO10	P011	PO12	PS01	PSO2	PSO3
CO1	1	1	1	1	1	1	2	1	2	1	2	1	2	2	1
CO2	2	2	1	2	2	1	3	1	2	1	2	1	3	2	1
CO3	2	1	1	1	2	1	2	2	1	1	1	2	2	2	1