

FACULTY OF COMPUTER APPLICATIONS

Programme	Master of Computer Applications				Branch/ Spec.	ComputerApplication				
Semester	III				Version	1.0.0.0				
Effective from Academic Year		2023-24		Effective for the batch Admitted in			June 2022			
SubjectCod e	P13A5ML2		SubjectName		Machine learning-II					
Teaching scheme					Examination scheme(Marks)					
(Perweek)	Lecture(DT)	Practical(Lab.)	Total			C E	S E E	Total		
	L	TU	P	T W						
Credit	2	0	2	0	2	Theory	4 0	60 0 0		
Hours	2	0	4	0	6	Practical	2 0	30 0		

Objective:

- To Understand the students the role of supervised learning.
- To Understand forecasting methods in machine learning.
- To Understand how to apply unsupervised learning in machine learning.
- To learn various advanced machine learning methods.

Pre-requisites:

- Basic Knowledge of Statistics and Programming Language

Course Outcomes :

- 1 = Slight (Low); 2 = Moderate (Medium); 3 = Substantial (High); “-” = No Correlation

Name of CO	Description
CO1	Apply supervised learning concepts to develop and evaluate logistic regression models for classification.
CO2	Analyze time-series data and apply appropriate forecasting techniques, including ARIMA models.
CO3	Implement clustering algorithms and evaluate cluster quality using similarity and dissimilarity measures.
CO4	Develop and compare advanced machine learning models using gradient descent, cross-validation, and ensemble methods.

Mapping of CO and PO								
CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8
CO1	3	2	1	3	-	-	-	1
CO2	3	2	1	2	-	-	-	1
CO3	2	3	1	3	-	-	-	1
CO4	3	3	2	3	1	1	-	2

Content:

Unit	SECTION I	Hrs
1	Introduction to Supervised Learning: Introduction to Analytics and Machine Learning, Why Machine Learning? Framework for developing Machine Learning Models Introduction to Binary Logistic Regression, Estimation of Parameters in Logistic Regression, Interpretation of Logistic Regression Parameters, Logistic Regression Model Diagnostics, Classification Table, Optimal Cut-Off Probability, Variable selection in Logistic Regression, Application of Logistic Regression.	7
2	Forecasting Techniques: Introduction to Forecasting, Time Series Data and Components of Time-Series data, Forecasting techniques and Forecasting Accuracy, Moving Average Method, Single Exponential Smoothing, Double Exponential Smoothing, Triple Exponential Smoothing, Regression Model for Forecasting, Auto-Regressive(AR), Moving average(MA), and ARMA Models, Auto-Regressive Integrated Moving Average(ARIMA) Process	8
SECTION II		
3	Introduction to Unsupervised Learning Algorithms Introduction to unsupervised learning, Introduction to Clustering, Distance and Dissimilarity measures used in Clustering, Euclidean distance, Standardized Euclidean distance, Manhattan distance, Minkowski distance, Jaccard Similarity Coefficient, Cosine similarity, Gower's Similarity coefficient, Quality and Optimal number of clusters, clustering algorithms, K-Means clustering and Hierarchical clustering.	6
4	Advanced Machine Learning How Machines Learn? Gradient Descent Algorithm, Developing a Gradient Descent algorithm for Linear Regression Model, Scikit-Learn library for Machine Learning, Steps for building Machine learning models, Bias-variance Trade-off, K-fold cross validation, advanced Regression Models, Advanced Machine Learning Algorithms, dealing with Imbalanced datasets, K-Nearest Neighbours(KNN) algorithm, Introduction to ensemble methods, Introduction to Ensemble methods, Random Forest algorithm, Building and evaluating Random Forest algorithm, Boosting algorithm, Model building using Adaboost and Gradient Boosting algorithm.	9

Practical Content:

List of programs specified by the subject teacher based on above mentioned topics.

TextBooks:

1	Kumar, U. D. (2017). Business Analytics: The Science of Data-driven Decision Making. Wiley India.
2	Kumar, U.D Machine Learning Using Python. Wiley India.

Reference Books:

1	Tom M. Mitchell. Machine Learning, McGraw Hill Education 1st Edition 2017.
2	Sebastian Raschka and Vahid Mirjalili. Python Machine Learning, Publisher : Ingram short title; 2nd edition (1 January 2017).
MOOC/Certification Courses:	
1	https://nptel.ac.in/courses/106106202
2	https://www.edx.org/
3	https://www.vlab.co.in/
4	Machine Learning A To Z Complete Course by Andrew Ng Beginner to Advance ML https://www.youtube.com/watch?v=PPLop4L2eGk&list=PLLssT5z_DsKh9vYZkQkYNWcItqhlRJLN
Question Paper Scheme:	
University Examination Duration: 3 Hours	
Note for Examiner: -	
(I) Questions 1 and 4 are compulsory with no options.	
(II) Internal options should be given in questions 2, 3, 5 and 6.	
SECTION – I	
Q.1 – 8 Marks	
Q.2 – 11 Marks	
Q.3 – 11 Marks	
SECTION - II	
Q.4 – 8 Marks	
Q.5 – 11 Marks	
Q.6 – 11 Marks	