GANPAT UNIVERSITY								
FACULTY OF DIPLOMA ENGINEERING								
Programme	Diploma in Chemical Engineering / Petrochemical Technology							
Semester	II Version 1.0.0.0							
Effective from	n Academic Year	2025-26	Effective for the batch Admitted in JULY 2025					
Course code	1CH2101	Course Name	Industrial Sustainability					

I.TEACHI	LTEACHING-LEARNING AND ASSESSMENT SCHEME																	
		Learning Scheme				Assessment Scheme												
Course	Course	Actual Contact Hrs./Week						Theory			Practical				Based on SL		Total	
Type	Code	CL	TL	LL	SLH	NLH	Credits	FA- TH			FA- PR	SA- PR	TOTAL		SI	LA	Marks	
								MAX MAX MAX MIN				MAX	MAX	MAX	MIN	MAX	MIN	Ī
DSC	1CH2101	3	-	-	5	8	4	40	60	100	40	-	-	-	-	20	8	120

Ab	breviation:	CL- Classroom Learning	TL - Tutorial Learning	LL - Laboratory Learning
		SLH - Self Learning Hours	NLH - Notional Learning Hours	SLA - Self Learning Assessment
		FA - Formative Assessment (T	erm work +Mid Sem Exam +Attendance)	SA - Summative Assessment

II. PRE-REQUISITES

Not required

III. INDUSTRY /EMPLOYER EXPECTED OUTCOMES

Industry and employers expect chemical and petrochemical engineers to gain fundamental knowledge of sustainable industrial practices, resource & waste management skills, environmental regulations, green technologies and eco-friendly practices in industry and society.

IV. COURSE LEARNING OUTCOMES

At the end of the course, students will be able to achieve the following course learning outcomes:

CO1: Understand the concepts of industrial sustainability

CO2: Apply the principles of resource efficiency

CO3: Demonstrate effective industrial waste management by implementing 3Rs

CO4: Interpret environmental governance frameworks, regulations, and green practices

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT:

v. IIIEOKI L		D ALIGNED COURSE CONTENT:	1	1
	Theory Learning	Learning Content mapped with		
Name of Unit	outcomes (TLO's) aligned	Theory Learning outcomes	Marks	Hours
	to CO's	(TLO's)&CO's		
Unit 1:	TLO1.1 History and	1.1 Explain the evolution of	12	10
Fundamentals	Evolution of Sustainability	sustainability concepts in an		
of Industrial	Concepts	industrial context.		
Sustainability	TLO1.2 Case Studies on	1.2 Differentiate between sustainable		
	Successful Industrial	and unsustainable industrial		
	Sustainability Practices	practices.		
	TLO1.3 UN Sustainable	1.3 Analyze case studies of successful		
	Development Goals (SDGs)	sustainability practices.		
	and Their Relevance to India	1.4 Relate UN Sustainable		
	TLO1.4 Concept of	Development Goals (SDGs) to		
	Sustainability and Industrial	industrial operations, with		
	Relevance	emphasis on India.		
	TLO1.5 Sustainable	1.5 Demonstrate the industrial		
	Development Goals (SDGs)	relevance of sustainability in		
	and Industry	modern production systems.		
	TLO1.6 Sustainable vs.			
	Unsustainable Industrial			
	Practices			

Unit 2: Resource Efficiency in Chemical and Petrochemical Industries	TLO2.1 Introduction to Life Cycle Assessment (LCA) TLO2.2 Digital Tools for Monitoring Industrial Resource Use (SCADA, IoT Basics) TLO2.3 Efficient Utilization of Water, Energy, and Raw Materials TLO2.4 Concepts of Input— Output Analysis in Industrial Operations TLO2.5 Industrial Symbiosis and Cleaner Production	 2.1 Apply the concept of Life Cycle Assessment (LCA) to industrial processes. 2.2 Utilize digital tools (SCADA, IoT) for monitoring resource efficiency. 2.3 Identify methods for efficient utilization of water, energy, and raw materials. 2.4 Explain Input—Output analysis in industrial operations. 2.5 Evaluate practices of industrial symbiosis and cleaner production. 	15	11
Unit 3: Industrial Waste Management and Circular Economy	TLO3.1 Types and Sources of Industrial Waste TLO3.2 3Rs in Industrial Context: Reduce, Reuse, Recycle TLO3.3 Basics of Waste Segregation and Safe Handling TLO3.4 Resource Recovery from Waste: Heat, Water, Materials TLO3.5 Circular Economy: Closed Loop Thinking	 3.1 Classify types and sources of industrial waste. 3.2 Apply 3Rs (Reduce, Reuse, Recycle) in an industrial context. 3.3 Demonstrate the importance of waste segregation and safe handling. 3.4 Analyze methods of resource recovery (heat, water, materials) from waste. 3.5 Explain the concept of circular economy and its role in closed-loop industrial systems. 	16	12
Unit 4: Environment al Governance and Green Practices	TLO4.1 Environmental Impact Assessment (EIA) Process Overview TLO4.2 Role of NGOs and Citizen Participation in Environmental Protection TLO4.3 Introduction to ESG (Environmental, Social, Governance) Standards in Industries TLO4.4 Overview of Indian Environmental Regulations (Air, Water, Hazardous Waste) TLO4.5 Role of Pollution Control Boards (CPCB, SPCB) TLO4.6 Use of Eco-Friendly Products in Industries TLO4.7 Examples of Renewable Energy Use in Indian Industries	 4.1 Summarize the Environmental Impact Assessment (EIA) process for industries. 4.2 Explain the role of NGOs and citizens in environmental protection. 4.3 Interpret ESG (Environmental, Social, Governance) standards in industry. 4.4 Describe major Indian environmental regulations (Air, Water, Hazardous Waste). 4.5 Discuss the functions of CPCB and SPCB in pollution control. 4.6 Promote the use of eco-friendly products in industries. 4.7 Provide examples of renewable energy applications in Indian industries. 	17	12

VI. SUGGESTED MICRO PROJECT / ASSIGNMENTS / ACTIVITIES FOR SELF LEARNING / SKILL DEVELOPMENT (SELF LEARNING)

- Video lectures or industry documentaries
- Demonstrate segregation of solid waste in campus/hostel and propose a recycling model.
- Debate/Presentation: "Sustainable vs. Unsustainable Industrial Practices" with real-world examples.

Mini projects

- Conduct a mock audit (energy/water/raw materials) in the college laboratory or a local small-scale unit, and suggest improvements.
- Design a model/system for converting industrial solid waste into useful products (e.g., fly ash bricks, plastic recycling).
- Invite industry expert or alumni talk

VII. I	VII. LIST OF REFERENCE BOOKS										
Sr. No.	Title	Author	Publication								
1	Textbook of Environmental Studies	Dr. Erach Bharucha,	UGC								
2	Environmental Chemistry	A.K. De	New Age International.								
3	Environmental Science and Engineering	Dr. P. Meenakshi	Tata McGraw Hill								
4	Waste Management	R.K. Garg	Khanna Publishers								

VIII. LINK OF LEARNING WEB RESOURCE 1 https://onlinecourses.nptel.ac.in/noc21_mg85/preview

XI. SU	XI. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE									
Unit	Unit Title	Align ed COs	Learning Hours	R- Level	U- Level	A- Level	Total Marks			
1	Fundamentals of Industrial Sustainability	CO1	10	4	6	2	12			
2	Resource Efficiency in Chemical and Petrochemical Industries	CO2	11	5	7	3	15			
3	Industrial Waste Management and Circular Economy	СОЗ	12	5	7	4	16			
4	Environmental Governance and Green Practices	CO4	12	5	8	4	17			
	Gran	d Total	45	19	28	13	60			

X. COs ANI Course outcome (Cos)		Programme Outcomes (POs)							Programme Specific Outcom (PSOs)				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3			
CO1	3	2	1	0	3	0	2	2	2	1			
CO2	2	3	2	2	3	1	2	3	2	1			
CO3	2	3	3	2	3	2	2	3	3	1			
CO4	2	2	2	1	3	2	3	2	3	2			
Legends: - 3- High 2-Moderate/Medium				1-S	light/Lov	$\overline{v} = 0$	-None		•				