GANPAT UNIVERSITY									
FACULTY OF ENGINEERING & TECHNOLOGY									
Programme	Diploma in Ag	Diploma in Agricultural Engineering							
Semester	П		Version	1.0.0.0					
Effective from Academic Year		2025-26	Effective for the	JULY 2025					
Course code	1AE2101	Course Name	Hydrology						

I.TE	I.TEACHING-LEARNING AND ASSESSMENT SCHEME																	
Cours Course Learning Scheme Assessment Scheme																		
Contac		Actual Contact Hrs./Week		GY YY		G 14	Theory			Practical			Based on SL		Total Marks			
		CL	T L	L L	SLH	NLH	Credits	FA- TH MAX	SA- TH	TOTAI MAX	MIN	FA- PR	SA- PR MAX	TOTAL	L MIN	SLA MAX	MIN	
									MAX			MAX					IVIIIN	
DSC	Hydrology	2	0	2	2	6	3	40	60	100	40	30	20	50	20	20	8	170

Ī	Abbreviation:	CL- Classroom Learning	TL - Tutorial Learning	LL - Laboratory Learning		
		SLH - Self Learning Hours	NLH - Notional Learning Hours	SLA - Self Learning Assessment		
		FA - Formative Assessment (Te	SA - Summative Assessment			

II. PRE-REQUISITES

Basic knowledge of Physics and Mathematics

Fundamentals of Fluid Mechanics and Soil Science.

Awareness of Water Resources and Environmental Science concepts.

Ability to analyze data and use simple statistical methods.

Familiarity with basic computer applications (Excel, graphing tools).

III. INDUSTRY / EMPLOYER EXPECTED OUTCOMES

They can apply hydrologic principles to design and manage water resources systems, analyze hydrological processes, and evaluate groundwater flow. They'll develop effective solutions for sustainable water management, preparing them for roles like water resources engineers, hydrologists, or environmental specialists.

IV. COURSE LEARNING OUTCOMES

At the end of the course, students will be able to achieve the following course learning outcomes:

CO1: Understand and describe the components of the hydrological cycle.

CO2: Analyze precipitation data and evaluate its impact on hydrological processes.

CO3: Calculate evaporation and transpiration rates and their effects on water balance.

CO4: Model surface runoff and understand its implications for flood management.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT:

CO5: Evaluate groundwater flow and its importance in water resources management.

CO6: Apply hydrologic principles in the design and management of water resources systems.

Name of Unit **Theory Learning Learning Content mapped with** Marks outcomes (TLO's) aligned Theory Learning outcomes (TLO's) to CO's & CO's Unit 1: TLO 1.1: **Explain** the **1.1** Explain the definition and scope of **Definition and** definition scope and of hydrology. **1.2** Describe the importance of hydrology Scope of hydrology. 1.2: **Hydrology** TLO Describe the in water resources management.

importance of hydrology in water resources management. TLO 1.3: Identify the components of the hydrological cycle

evaporation,

infiltration.

(precipitation,

transpiration,

1.3 Identify the components of the hydrological cycle: evaporation, transpiration, infiltration, runoff, and groundwater flow.

precipitation, 10 5 **1.4** Discuss global water distribution.

Hours

	runoff, groundwater flow).			
	TLO 1.4: Discuss global water			
	distribution.			
Unit 2:	TLO 2.1: Explain types and	2.1 Explain types and forms of		
Precipitation	forms of precipitation.	precipitation.		
	TLO 2.2: Apply methods for	2.2 Apply methods for measurement of		
	measurement of precipitation.	precipitation.	40	_
	TLO 2.3: Analyze	2.3 Analyze precipitation data and	10	5
	precipitation data and perform frequency analysis.	perform frequency analysis of rainfall.		
	TLO 2.4: Estimate design	2.4 Estimate design storms		
	storms.	2.4 Estimate design storms		
Unit 3:	TLO 3.1: Define evaporation	3.1 Define evaporation and transpiration		
Evaporation	and transpiration and their	and their importance.		
and	importance.	3.2 Explain factors affecting evaporation		
Transpiration	TLO 3.2: Explain factors	and transpiration.		
	affecting evaporation and	3.3 Describe measurement techniques		
	transpiration.	and estimation methods (empirical	10	5
	TLO 3.3: Describe	and analytical).		
	measurement techniques and	3.4 Discuss evapotranspiration and its role in water balance.		
	estimation methods. TLO 3.4: Discuss	Tote in water barance.		
	evapotranspiration and its role			
	in water balance.			
Unit 4:	TLO 4.1: Explain runoff	4.1 Explain runoff processes and factors		
Runoff and	processes and factors affecting	affecting runoff.		
Flood	runoff.	4.2 Develop runoff hydrographs and		
Management	TLO 4.2: Develop runoff	rainfall-runoff relationships.		
	hydrographs and rainfall-	4.3 Estimate peak discharge.	40	_
	runoff relationships.	4.4 Apply methods of flood routing and	10	5
	TLO 4.3: Estimate peak discharge.	flood management.		
	TLO 4.4: Apply methods of			
	flood routing and flood			
	management.			
Unit 5:	TLO 5.1: Explain aquifers and	5.1 Explain aquifers and their types.		
Groundwater	their types.	5.2 Apply Darcy's law and groundwater		
Hydrology	TLO 5.2: Apply Darcy's law	flow equations.		
	and groundwater flow	5.3 Explain well hydraulics and pumping		
	equations.	tests.	10	5
	TLO 5.3: Explain well hydraulics and pumping tests.	5.4 Evaluate groundwater management and sustainability.		
	TLO 5.4: Evaluate	and sustamatinty.		
	groundwater management and			
	sustainability.			
Unit 6:	TLO 6.1: Describe hydrologic	6.1 Describe hydrologic models and their		
Hydrologic	models and their applications.	applications.		
Models and	TLO 6.2: Explain watershed	6.2 Explain watershed management.		
Applications	management.	6.3 Apply hydrologic principles in		
	TLO 6.3: Apply hydrologic	stormwater management system	10	_
	principles in stormwater management system design.	design. 6.4 Use rainwater harvesting and	10	5
	TLO 6.4: Use rainwater	hydrologic design criteria for water		
	harvesting and hydrologic	resources projects.		
	design criteria for water	1 3		
	resources projects.			<u> </u>
-				

VI. L	ABORATORY LEARNING OUTCOME AND A	ALIGNED PRACTICAL	
Sr. No.	Practical/Laboratory Learning Outcome (LLO)	Practical Titles	Relevant COs
1	LLO 1: Demonstrate knowledge of instruments used in meteorological observatory stations and their functions	To study various instruments at meteorological observatory station	CO1
2	LLO 2.1: Understand the working principle and application of non-recording rain gauges	To study the non-recording rainfall gauge	CO2
3	LLO 3.1: Operate and interpret data from self-recording rainfall gauges	To study the self-recording rainfall gauge	CO2
4	LLO 4.1: Analyze rainfall data for intensity, duration, and frequency distribution	Analysis of rainfall data i.e., intensity, duration, frequency analysis	CO2
5	LLO 5.1: Estimate mean areal rainfall using different methods	Estimate the mean areal depth of rainfall	CO2
6	LLO 6.1: Measure and estimate surface runoff from rainfall events	Measurement and estimation of runoff	CO4

VII. SUGGESTED MICRO PROJECT / ASSIGNMENTS / ACTIVITIES FOR SELF LEARNING / SKILL DEVELOPMENT (SELF LEARNING)

- Report on global and regional water distribution.
- Analyze 10 years rainfall data for mean and return period.
- Design rain gauge network for a watershed.
- Estimate evapotranspiration using different methods.
- Develop simple water balance model for campus/field.
- Construct runoff hydrograph from rainfall–runoff data.
- Design stormwater drainage system for campus/catchment.
- Case study on flood management in Indian river basin.
- Groundwater survey and aquifer classification in village.
- Conduct mini pumping test for aquifer properties.
- Comparative chart of rainwater harvesting structures.
- Prepare mini watershed management plan.
- Simulate rainfall–runoff using hydrologic software.
- Poster/infographic of hydrological cycle.
- Review on climate change impact on hydrological cycle.

Mini projects

- Rainfall Data Analysis Collect 10–15 years rainfall data of your district, compute mean rainfall, return period, and frequency analysis.
- Runoff Estimation Calculate runoff for a small watershed using Rational method and SCS Curve Number method.
- Evapotranspiration Study Estimate crop water requirement using Blaney-Criddle and Penman-Monteith methods, compare results.

- Groundwater Assessment Conduct a survey of wells in a village to classify aquifers and analyze groundwater availability.
- Rainwater Harvesting Design Prepare design of rooftop rainwater harvesting and recharge structure for your campus/building.
- Flood Case Study Analyze a recent flood event in India, prepare report on causes, impacts, and mitigation measures.

VIII.	LIST OF INSTRUMENTS / EQUIPMENT / TRAINER BOARD						
1	Non-recording Rain Gauge						
2	Self-recording Rain Gauge (Automatic / Tipping bucket)						
3	Class A Pan Evaporimeter						
4	Lysimeter						
5	Sunshine Recorder						
6	Anemometer						
7	Hygrometer / Psychrometer						
8	Thermometers (Dry bulb, Wet bulb, Max–Min)						
9	Current Meter / Flow Meter						
10	Weirs (V-notch, Rectangular, Trapezoidal)						
11	Parshall Flume						
12	Water Level Recorder						
13	Piezometer Tubes						
14	Runoff Measuring Tank / Setup						
15	Darcy's Law Apparatus (Trainer board)						
16	Constant Head Permeameter						
17	Falling Head Permeameter						
18	Pumping Test Apparatus (Well and Submersible Pump)						
19	Groundwater Flow Model / Aquifer Model (Trainer board)						
20	Rainfall–Runoff Simulator (Trainer board)						

IX. LIS	IX. LIST OF REFERENCE BOOKS										
Sr.No.	Title	Author	Publication								
1	Land and Water Management	Murthy, V. V. N.	Kalyani Publishers, New Delhi.								
	Engineering (IV edition).										
2	Hydrology: Principles, Analysis, and	Raghunath, H. M.	New Age International, Pvt. Ltd.,								
	Design (Revised II Edition).	(2006).	Publishers, New Delhi								
3	Engineering Hydrology (III Edition)	Subramaniya, K.	Tata McGraw-Hill Publishing Co.,								
		(2008).	New Delhi.								

X.LINK OF LEARNING WEB RESOURCE

1	https://onlinecourses.nptel.ac.in/noc23_ce44/preview
2	https://onlinecourses.nptel.ac.in/noc24\ ag05/preview
3	https://onlinecourses.nptel.ac.in/noc22_ce37/preview_
4	https://www.nptelprep.in/courses/126105334/materials
5	https://wecivilengineers.files.wordpress.com/2017/10/applied-hydrology-ven-te-chow.pdf
6	https://karstwaters.org/2023/02/new-open-access-hydrogeology-textbook-available-by-kwi-board-
	member-neven-kresic/
7	https://gw-project.org/multilingual-online-version-of-groundwater-by-freeze-and-cherry-with-free-
	access-to-all/
8	https://www.learner.org/series/the-habitable-planet-a-systems-approach-to-environmental-
	science/water-resources/online-textbook/

XI. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE											
Unit	Unit Title	Aligned COs	Learnin g Hours	R- Level	U- Level	A-	Total Marks				
1	Definition and Scope of Hydrology	CO1	5	3	3	Level 4	10				
2	Precipitation	CO2	5	3	4	3	10				
3	Evaporation and Transpiration	CO3	5	3	2	5	10				
4	Runoff and Flood Management	CO4	5	2	5	3	10				
5	Groundwater Hydrology	CO5	5	2	4	4	10				
6	Hydrologic Models and Applications	CO6	5	2	4	4	10				
	G	rand Total	30	17	25	18	60				

XII. COs Al	XII. COs AND POs AND PSOs MAPPING										
Course outcome (Cos)		Pr	ogramr	ne Outco	Programme Specific Outcomes (PSOs)						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	
CO1	3	2	0	0	2	0	1	3	2	3	
CO2	3	3	2	2	2	0	2	3	2	3	
CO3	3	3	2	2	2	0	2	3	2	3	
CO4	3	3	3	3	2	2	2	3	3	3	
CO5	3	3	2	2	2	1	2	3	3	3	
CO6	3	3	3	3	3	2	2	3	3	3	
Legends: - 3- High		2-M	2-Moderate/Medium			1-Slight/Low 0					