GANPAT UNIVERSITY								
FACULTY OF DIPLOMA ENGINEERING								
Programme	Diploma in Chemical Engineering							
Semester	I		Version 1.0.0.0					
Effective from Academic Year 2025-26			Effective for the batch Admitted in	JULY 2025				
Course code	Course code 1ES1114 Course Name Fundamentals of Chemical Engineering							

I.TE	I.TEACHING-LEARNING AND ASSESSMENT SCHEME																	
				Lear	ning Sch	eme						Asse	ssment Sc	heme				
Cours	Course	Actual Contact Hrs./Week					Theory			Practical				Based on SL		Total		
e Type	Code	CL TL LL SLH	NLH	Credits	FA- TH	SA- TH	тот	AL	FA- PR	SA- PR	то	ΓAL	SI	_A	Mar ks			
								MAX	MAX	MAX	MIN	MAX	MAX	MAX	MIN	MAX	MIN	
DSC	1ES1114	3	-	-	1	4	2	40	60	100	40	-	-	-	-	20	8	120

	CL- Classroom Learning	TL - Tutorial Learning	LL - Laboratory Learning		
Abbreviation:	SLH - Self Learning Hours	NLH - Notional Learning Hours	SLA - Self Learning Assessment		
	FA - Formative Assessment (SA - Summative Assessment			
	+Attendance)	SA - Summative Assessment			

II. PRE-REQUISITES

Not required

III. INDUSTRY /EMPLOYER EXPECTED OUTCOMES

Industry and employers expect chemical engineers to use basic science knowledge and skills to design and improve chemical processes with modern tools for different industries, while helping the environment and keeping up with new technologies.

IV. COURSE LEARNING OUTCOMES

At the end of the course, students will be able to achieve the following course learning outcomes:

CO1: Understand the history, impact, and key contributions in chemical engineering

CO2: Understand core scientific principles used in chemical engineering

CO3: Identify key unit operations, and unit processes

CO4: Understand technological developments using digital tools

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT:

Name of Unit	Theory Learning outcomes (TLO's) aligned to CO's	Learning Content mapped with Theory Learning outcomes (TLO's) & CO's	Marks	Hours
Unit 1	TLO1.1 Differentiate the scope		13	10
Introduction	and focus of chemical	\mathcal{E}		
to Chemical	engineering compared to	1.2 History of the Chemical		
Engineering	chemistry.	Process Industry and its		
	TLO1.2 Describe the historical			
	_	1.3 Role and Importance of		
	impact of the chemical process	Chemical Engineers.		
	industry.	1.4 Pioneers in Chemical		
	TLO1.3 Discuss the role and significance of chemical engineers in various sectors. TLO1.4 Identify key pioneers and their contributions to chemical engineering.	Engineering. 1.5 Major Achievements in Chemical Engineering.		
	TLO1.5 Outline major achievements that have shaped			
	modern chemical engineering.			

Unit 2 Core Components of Chemical Engineering	TLO2.1 Identify the major scientific pillars supporting chemical engineering: mathematics, physics, chemistry, biology. TLO2.2 Explain the basic principles of thermodynamics and their role in chemical engineering processes. TLO2.3 Describe transport phenomena and their importance in process engineering. TLO2.4 Discuss the significance of chemical kinetics in reaction engineering. TLO2.5 Introduce the fundamentals of process design, process dynamics, and control concepts.	 2.1 Major Scientific Pillars: Mathematics, Physics, Chemistry, Biology. 2.2 Role of Thermodynamics and Transport Phenomena. 2.3 Role of Thermodynamics and Transport Phenomena. 2.4 Importance of Chemical Kinetics. 2.5 Introduction to Process Design, Dynamics, and Control. 	17	12
Unit 3 Unit Operations and Unit Processes	TLO3.1 Define and classify unit operations and unit processes in chemical engineering. TLO3.2 Describe common unit operations such as filtration, distillation, and heat exchange. TLO3.3 Provide an overview of key unit processes like nitration and hydrogenation. TLO3.4 Explain the basics of equipment design relevant to unit operations and processes. TLO3.5 Interpret process flow sheeting and block diagrams used in chemical process design.	 3.1 Definition and Classification 3.2 Common Unit Operations: Filtration, Distillation, Heat Exchange 3.3 Overview of Key Unit Processes: Nitration, Hydrogenation 3.4 Basics of Equipment Design 3.5 Process Flow sheeting and Block Diagrams 	15	12
Unit 4 Technological Developments and Interdisciplina ry Integration	TLO4.1 Explain the role of computers in chemical engineering simulation and design. TLO4.2 Identify common chemical engineering software tools at an introductory level. TLO4.3 Describe the integration of chemical engineering with other engineering disciplines. TLO4.4 Differentiate between traditional and modern chemical engineering practices. TLO4.5 Outline the role of chemical engineers in	 4.1 Role of Computers in Simulation and Design 4.2 Chemical Engineering Software Tools (Introductory Level) 4.3 Integration with Other Engineering Disciplines 4.4 Traditional vs. Modern Chemical Engineering 4.5 Role of Chemical Engineers in Emerging Fields 	15	11

as ech,

VI. SUGGESTED MICRO PROJECT / ASSIGNMENTS / ACTIVITIES FOR SELF LEARNING / SKILL DEVELOPMENT (SELF LEARNING)

- Write a short paragraph summarizing the history of chemical engineering and name three pioneers with their contributions.
- Sketch a basic flow diagram for a common unit operation like filtration or distillation and label the main equipment.
- Make a list matching mathematics, physics, chemistry, and biology topics with their importance in chemical engineering.
- Make a list of at least five possible jobs or industries where chemical engineers work and mention one emerging field like environment or biotech.

Mini projects

- Research and prepare a brief report on three pioneers in chemical engineering and highlight their major achievements and how they influenced the chemical industry and society.
- Choose any three-unit operations and write simple explanations and draw basic diagrams showing how each operation works.

VII. I	VII. LIST OF REFERENCE BOOKS									
Sr. No.	Title	Author	Publication							
1	Introduction to Chemical Engineering	S.K. Ghosal, S. Sanyal, S.Datta	Tata McGraw Hill							
2	Introduction to Chemical Engineering	S. Pushpavanam	PHI Learning Pvt. Ltd.							
3	Introduction to Chemical Engineering	W.L. Badger, J.T. Banchero	Tata McGraw Hill							
4	Outlines of Chemical Technology	C.E. Dryden	East-West Press							

VIII. I	/III. LINK OF LEARNING WEB RESOURCE								
1	https://nptel.ac.in/courses/103103220								
2	https://nptel.ac.in/courses/103103145								
3	https://nptel.ac.in/courses/103103153								
4	https://nptel.ac.in/courses/103103209								
5	https://youtu.be/Q-IhyZ2Uazs								

IX. SU	IX. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE									
Unit	Unit Title	Aligne d COs	Learning Hours	R- Leve	U- Leve 1	A- Leve l	Total Mark s			
1	Introduction to Chemical Engineering	CO1	10	5	5	3	13			
2	Core Components of Chemical Engineering	CO2	12	7	7	3	17			
3	Unit Operations and Unit Processes	CO3	12	6	5	4	15			
4	Technological Developments and Interdisciplinary Integration	CO4	11	6	5	4	15			
	Gr	and Total	45	24	22	14	60			

X. COs ANI	X. COs AND POs AND PSOs MAPPING										
Course outcome (Cos)	Programme Outcomes (POs) Programme								me Specific (PSOs)	Outcomes	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	
CO1	2	1	0	0	2	1	1	1	0	2	
CO2	3	2	1	0	0	0	1	2	0	2	
CO3	2	2	2	3	1	1	1	3	2	2	
CO4	1	1	1	1	2	2	3	2	3	2	
Legends: - 3	Legends: - 3- High 2-Moderate/Medium 1-Slight/Low 0-None										