	GANPAT UNIVERSITY							
	FACULTY OF ENGINEERING & TECHNOLOGY							
Programme	Programme Diploma in Agricultural Engineering							
Semester	П		Version	1.0.0.0				
Effective from Ac	Effective from Academic Year 2025-26 Effective for the batch Admitted in JULY 2025							
Course code 1AE2102 Course Name Farm Machinery and Power								

I.TE	I.TEACHING-LEARNING AND ASSESSMENT SCHEME																			
Cours	Course	Lear	ning	Schem	ne			Assessm	Assessment Scheme											
е Туре	Code	Actual Contact Hrs./Week		Contact		Contact		NI II	C 124-	Theory				Practic	al			Based o	on SL	Total Marks
			L L	SLH	SLH NLH Credits		FA- TH	SA- TH	TOTAL		FA- PR	SA- PR	TOTAL		SLA) my				
								MAX	MAX	MAX	MIN	MAX	MAX	MAX	MIN	MAX	MIN			
DSC	Farm Machinery and Power	2	0	2	2	6	3	40	60	100	40	30	20	50	20	20	8	170		

Abbreviation:	CL- Classroom Learning	TL - Tutorial Learning	LL - Laboratory Learning
	SLH - Self Learning Hours	NLH - Notional Learning Hours	SLA - Self Learning Assessment
	FA - Formative Assessment (Te	erm work +Mid Sem Exam +Attendance)	SA - Summative Assessment

II. PRE-REQUISITES

Basic knowledge of farm machinery role in agriculture.

III. INDUSTRY / EMPLOYER EXPECTED OUTCOMES

Ability to assess soil formation, classification, and physical properties for appropriate land use and crop planning. Proficiency in evaluating soil organic matter and managing soil reactions (acidic, saline, sodic) to enhance productivity.

IV. COURSE LEARNING OUTCOMES

At the end of the course, students will be able to achieve the following course learning outcomes:

- **CO1.** To understand engine principles, classification, terms, and efficiencies.
- **CO2.** To explore components like pre-air cleaners, inlet manifold, and air cleaner types.
- CO3. To grasp fuel system components, including pumps, injectors, and micro fuel systems.
- **CO4.** To comprehend cooling system importance, defects, and lubrication system functions.
- **CO5.** To study power, efficiency, tests, and pollution control in IC engines.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT:

V. THEORT LE	EARNING OUTCOMES AND	ALIGNED COURSE CONTENT:		
Name of Unit	Theory Learning	Learning Content mapped with	Marks	Hours
	outcomes (TLO's) aligned	Theory Learning outcomes (TLO's)		
	to CO's	& CO's		
Unit-1:	TLO 1.1 : Explain the	1.1 Introduction and classification of IC	12	6
Introduction to	classification and working	engines		
IC Engines	principles of IC engines (two-	1.2 Working principle of four-stroke and		
	stroke and four-stroke).	two-stroke cycles		
	TLO 1.2: Differentiate	1.3 Comparison of petrol and diesel		
	between petrol and diesel	engines		
	engines.	1.4 Location and function of various		
	TLO 1.3: Identify various	engine parts		
	engine parts and their	1.5 IC engine terms: bore, stroke, dead		
	functions.	center, compression ratio, clearance		
	TLO 1.4: Define and calculate	volume, swept volume, piston		
	engine parameters (bore,	displacement, total volume, engine		
	stroke, dead centers,	displacement, piston speed		
	compression ratio, volumes,	1.6 Calculation of IHP, BHP, FHP, and		
	piston speed, etc.).	engine efficiencies		
	TLO 1.5: Calculate IHP, BHP,			

	FHP, and efficiencies.			
Unit-2: Air	TLO 2.1: Describe the	2.1 Components of air intake system: pre-	12	6
Intake System	components of the air intake	air cleaner, inlet manifold, exhaust		
Jiiiiii System	system.	manifold		
	TLO 2.2: Differentiate	2.2 Types of air cleaners: wet and dry		
	between types of air cleaners.			
Unit-3: Fuel	TLO 3.1: Explain components	3.1 Components of fuel system	12	6
System	of the fuel system.	3.2 Fuel feed pump: description and		
·	TLO 3.2: Describe and	working		
	compare types of fuel feed and	3.3 Types and working of fuel injection		
	injection pumps.	pump and injector		
	TLO 3.3: Illustrate the	3.4 Working of micro fuel injection		
	working of fuel injectors and	system for multi-cylinder engine		
	micro fuel injection system.			
Unit-4:	TLO 4.1: Explain the	4.1 Necessity of engine cooling	12	6
Cooling and	necessity and components of	4.2 Cooling system features, thermostat		
Lubrication	cooling systems.	4.3 Defects in cooling system and		
Systems	TLO 4.2: Diagnose and rectify	rectification		
	cooling system defects.			
	TLO 4.3: Identify functions,			
	types, and properties of	4.5 Additives for improving lubricant		
	lubricants.	properties		
	TLO 4.4: Explain lubrication	4.6 Lubrication system of IC engine: oil		
	systems and their components.	pumps, oil filters, relief valves		
Unit-5:	TLO 5.1: Define and calculate	5.1 Engine power: indicated power, brake	12	6
Engine	engine power (indicated and	power		
Performance	brake).	5.2 Efficiency measures: mechanical,		
and Efficiencies	TLO 5.2: Explain efficiency	thermal, relative, volumetric efficiencies		
	measures.	5.3 Methods of finding indicated and		
	TLO 5.3: Demonstrate	brake horsepower		
	methods of finding			
	horsepower.			

VI. L	ABORATORY LEARNING OUTCOM	IE AND ALIGNED PRACTICAL	
Sr. No.	Practical/Laboratory Learning Outcome (LLO)	Practical Titles	Relevant Cos
1	LLO 1.1: Identify various types of diesel engines and their classification.	Identification of various types of diesel engines.	CO1
2	LLO 2.1: Recognize tools used for dismantling and assembling IC engines.	Identification of various tools used for dismantling and assembling IC engines.	CO1
3	LLO 3.1: Demonstrate dismantling of IC engine, inspection of parts, and clearance measurement.	Engine dismantling and inspection of various parts, measurements of clearances.	CO3
4	LLO 4.1: Reassemble IC engine and diagnose troubleshooting issues.	Engine assembly and troubleshooting.	CO3
5	LLO 5.1: Explain the working of governing system in IC engines.	Study of engine governing system.	CO5
6	LLO 6.1: Examine construction and working of valve systems.	Study of valve system.	CO1, CO5
7	LLO 7.1: Dismantle, study, and reassemble fuel injection equipment of multi-cylinder engine.	Study of fuel injection equipment of multicylinder engine, dismantling and reassembling.	CO3
8	LLO 8.1: Examine cooling system components and thermostat valve operation.	Study of cooling system, water pump, thermostat valve.	CO4
9	LLO 9.1: Examine lubrication system components, oil pump, and oil filter.	Study of lubrication system, oil pump, oil filter.	CO4
10	LLO 10.1: Calculate indicated power,	Determination of indicated power/brake	CO5

brake	power,	and	specific	fuel	power and specific fuel consumption.	
consum	ption.					

VII. SUGGESTED MICRO PROJECT / ASSIGNMENTS / ACTIVITIES FOR SELF LEARNING / SKILL DEVELOPMENT (SELF LEARNING)

- Prepare a diagram showing 4-stroke and 2-stroke engine cycles.
- Compare petrol and diesel engines with labeled parts.
- Calculate IHP, BHP, and engine efficiencies for a small engine.
- Identify components of air intake and types of air cleaners in vehicles.
- Make a small model to show airflow through filters.
- Study fuel injection system and injectors.
- Measure fuel consumption of a small engine under different loads.
- Observe cooling system parts and troubleshoot simple defects.
- Identify engine lubricants and their applications.
- Determine brake power and efficiency of a small engine.
- Prepare a report on ways to improve engine efficiency and reduce pollution.

Mini projects

- Prepare a chart comparing petrol and diesel engines with parts and working cycles.
- Build a simple 4-stroke or 2-stroke engine model to demonstrate the cycle.
- Measure fuel consumption of a small engine under different loads and calculate efficiency.
- Observe and analyze engine cooling and lubrication systems; suggest improvements.
- Conduct experiments to find brake power, indicated power, and overall efficiency of a small engine.
- Study and demonstrate spray patterns of fuel injectors in a multi-cylinder engine.
- Identify common faults in a small engine, dismantle, troubleshoot, and reassemble it.

VIII.	LIST OF INSTRUMENTS / EQUIPMENT / TRAINER BOARD
1	Diesel Engine Trainer Board – Single-cylinder or multi-cylinder, for studying engine operations.Petrol
	Engine Trainer Board – 4-stroke engine trainer for demonstration.
2	Air Intake System Components – Pre-air cleaner, inlet manifold, exhaust manifold.
3	Fuel System Components – Fuel feed pump, fuel injection pump, injectors, micro fuel injection system.
4	Cooling System Components – Radiator, water pump, thermostat, coolant circulation setup.
5	Lubrication System Components – Oil pump, oil filter, oil pan, relief valves.
6	Dismantling and Assembly Tools – Wrenches, screwdrivers, pullers, torque wrenches, feeler gauges.
7	Measuring Instruments – Vernier caliper, micrometer, dial gauge, manometer, pressure gauge.
8	Dynamometer / Brake Test Rig – For measuring engine power (BHP/IHP).
9	Exhaust Gas Analyzer – To study emission and pollution parameters.
10	Indicator Diagram Apparatus – For drawing P–V diagrams and calculating indicated power.
11	Stopwatch / Tachometer – For measuring engine speed and time-based experiments
12	Diesel Engine Trainer Board – Single-cylinder or multi-cylinder, for studying engine operations.Petrol
	Engine Trainer Board – 4-stroke engine trainer for demonstration.

IX. LIS	IX. LIST OF REFERENCE BOOKS											
Sr.No.	Title	Author	Publication									
1	Elements of Agricultural Engineering.	Sahay, Jagdishwar	Standard Publishers Distributors,									
			Nai Sarak,Delhi									
2	Principles of Agricultural Engineering	Michael, A.M., & Ojha,	JainBrothers.									
	(Vol1) 14th Edition	T.P. (2021)										

X.LINK OF LEARNING WEB RESOURCE

1	https://nptel.ac.in/courses/126105011
2	https://onlinecourses.nptel.ac.in/noc24_me41/preview
3	https://www.fao.org/3/w1238e/w1238e.pdf
4	https://ecoursesonline.iasri.res.in/mod/page/view.php?id=125658
5	https://ecourses.icar.gov.in/https://ecourses.icar.gov.in/
6	https://agrimoon.com/wp-content/uploads/Elements-of-Agricultural-Engineering.pdf
7	https://www.agrimoon.com/wp-content/uploads/Principles-of-Agricultural-Engineering-Volume-
	<u>I.pdf</u>
8	https://www.slideshare.net/ErAmitKumar7/farm-machinery-and-power
9	https://extension.okstate.edu/fact-sheets/farm-power-and-machinery-management.html
10	https://open.umn.edu/opentextbooks/textbooks/introduction-to-mechanical-engineering-design-
	and-manufacturing

XI. SU	XI. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE										
Unit	Unit Title	Aligned	Learning	R-	U-	A-	Total				
		COs	Hours	Level	Level	Level	Marks				
1	Introduction to IC Engines	CO1	6	5	3	4	12				
2	Air Intake System	CO2	6	5	4	3	12				
3	Fuel System	CO3	6	5	2	5	12				
4	Cooling and Lubrication Systems	CO4	6	4	5	3	12				
5	Engine Performance and Efficiencies	CO5	6	4	4	4	12				
		Grand Total	30	23	18	19	60				

XII. COs A	XII. COs AND POs AND PSOs MAPPING										
Course outcome (Cos)		Pr	ogramı	ne Outco	Program	me Specific (PSOs)	Outcomes				
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3	
CO1	2	2	1	3	1	1	2	2	1	1	
CO2	1	1	1	3	1	1	2	1	2	1	
CO3	1	2	2	3	1	1	2	1	3	1	
CO4	1	2	2	3	2	1	2	1	3	1	
CO5	2	3	2	4	2	2	2	2	3	1	
Legends: - 3	Legends: - 3- High 2-Moderate/Medium 1-Slight/Low 0-None										