	GANPAT UNIVERSITY									
	FACULTY OF ENGINEERING & TECHNOLOGY									
Programme	Programme Mechatronics Engineering									
Semester	I		Version	1.0.0.0						
Effective fron	Effective from Academic Year 2025-26 Effective for the batch Admitted in JULY 2025									
Subject code	Subject code 1ES1109 Subject Name Elements of Mechatronics Engineering									

I.TE	TEACHING-LEARNING AND ASSESSMENT SCHEME																	
Cours	Course	Lear	Learning Scheme Assessment Scheme															
e Type	Code	Actual Contact Theory Practical							Theory Practical		Based o	on SL	Total					
		Hrs./	Week														Marks	
					SLH	NLH	Credits	FA-	SA-	TOTAL	_	FA-	SA-	TOTAL	1	SLA	SLA	
		CL	TL	LL				TH	TH			PR	PR	IOIA	Ь			
								MAX	MAX	MAX	MIN	MAX	MAX	MAX	MIN	MAX	MIN	
DSC	1ES1109	2	-	2	-	4	2	40	60	100	40	30	20	50	20	-	-	150

Abbreviation:	CL- Classroom Learning	TL - Tutorial Learning	LL - Laboratory Learning
	SLH - Self Learning Hours	NLH - Notional Learning Hours	SLA - Self Learning Assessment
	FA - Formative Assessment (To	erm work +Mid Sem Exam +Attendance)	SA - Summative Assessment

II. PRE-REQUISITES

Zeal to learn.

III. INDUSTRY / EMPLOYER EXPECTED OUTCOMES

- 1. Understand basic mechatronic system components and their functions.
- 2. Operate simple sensors, actuators, and control devices.
- 3. Assist in basic troubleshooting of mechatronic equipment.

IV. COURSE LEARNING OUTCOMES

At the end of the course, students will be able to achieve the following course learning outcomes:

- **CO1:** Understand basic mechatronic systems and their components.
- **CO2:** Identify and explain the working of common sensors and transducers.
- **CO3:** Describe types of actuators and their applications, including mechanical, electrical, pneumatic, and hydraulic.
- **CO4:** Understand PLC structure and write simple ladder logic.
- **CO5:** Recognize emerging trends and perform basic system integration using sensors and controllers.

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT:

	TI I		M	TT
Name of Unit	Theory Learning outcomes	Learning Content mapped	Marks	Hours
	(TLO's) aligned to CO's	with Theory Learning		
		outcomes (TLO's) & CO's		
Unit-1:	TLO 1.1 Define mechatronics and	1.1 Definition and Scope of	12	6
Introduction to	explain its multidisciplinary scope	Mechatronics		
Mechatronic	in engineering.	1.2 Advantages &		
Systems	TLO 1.2 List and explain the	Disadvantages of		
	advantages and limitations of	Mechatronics		
	mechatronic systems.	1.3 Applications of		
	TLO 1.3 Identify and describe	Mechatronics in Modern		
	real-world industrial applications	Industry		
	of mechatronics.	1.4 Mechatronics Block		
	TLO 1.4 Interpret and explain the	Diagram and Explanation		
	block diagram of a basic	1.5 Mechatronics Components		
	mechatronic system.	and Integration		
	TLO 1.5 Identify major	1.6 Mechatronics Relevance in		
	components of a mechatronic	Industry 4.0 and IoT		

Unit-2: Basic Sensors and Transducers	system and explain their integration. TLO 1.6 Explain the significance of Industry 4.0 and IoT in the evolution of mechatronic systems. TLO 2.1 Classify and explain types of sensors and transducers. TLO 2.2 Identify common sensors used in automation. TLO 2.3 Explain working principles of selected sensors.	 2.1 Definition of sensors and transducers. 2.2 Classification: contact & non-contact. 2.3 Types: LVDT, Potentiometer, Proximity, Thermistor, Hall effect, LDR, etc. 	12	6
Unit-3: Actuators – Mechanical, Electrical, Pneumatic & Hydraulic	TLO 3.1 Identify different types of actuators. TLO 3.2 Analyse the role of gears, cams, and linkages. TLO 3.3 Compare NC, CNC, and DNC systems. TLO 3.4 Select suitable actuator for application.	3.1 Mechanical: gears (spur, bevel), cams, linkages. 3.2 Electrical: DC, AC, stepper, servo motors. 3.3 Pneumatic: air cylinders. 3.4 Hydraulic: piston-cylinder system. 3.5 NC, CNC, DNC.	14	8
Unit-4: Programmable Logic Controllers (PLC)	TLO 4.1 Explain PLC structure and operation. TLO 4.2 Create basic PLC logic. TLO 4.3 Apply PLC in automation examples. TLO 4.4 Know the application of PLC.	working. 4.2 I/O, memory, processor.	12	6
Unit-5: Integration and Emerging Technologies	TLO 5.1 Describe current trends in Mechatronics. TLO 5.2 Identify basics of IoT and embedded systems. TLO 5.3 List steps for simple system integration. TLO 5.4 Able to build mini-Project with Arduino.	 (basic concepts). 5.2 Arduino, Raspberry Pi – basic role. 5.3 Project integration concept (sensor + controller + actuator). 	10	4

VI. L	VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL								
Sr.	Practical/Laboratory Learning	Practical Titles	Relevant						
No.	Outcome (LLO)	Tructicul Trucs	COs						
1	LLO 1.1 Identify mechatronic system components.	Identification of sensors, actuators, controllers.	CO1						
2	LLO 2.1 Observe and explain sensor outputs.	Testing of LVDT, proximity sensor, thermistor.	CO2						

3	LLO 2.2 Measure physical quantities using sensors.	Displacement & temperature sensor interfacing.	CO2
4	LLO 3.1 Demonstrate mechanical actuators.	Model of gear mechanism, cam-follower.	CO3
5	LLO 3.2 Test electrical actuators.	Operation of DC motor, stepper motor.	CO3
6	LLO 3.3 Demonstrate pneumatic and hydraulic systems.	Air cylinder and hydraulic piston operation.	CO3
7	LLO 4.1 Simulate simple ladder logic.	PLC programming using simulation tools.	CO4
8	LLO 4.2 Apply PLC to small automation task.	Create a program for bottle filling/traffic light.	CO4
9	LLO 5.1 Integrate sensors and actuators.	Mini integration using Arduino or PLC.	CO5

VII. SUGGESTED MICRO PROJECT / ASSIGNMENTS / ACTIVITIES FOR SELF LEARNING / SKILL DEVELOPMENT (SELF LEARNING)

VIII.	LIST OF INSTRUMENTS / EQUIPMENT / TRAINER BOARD
1.	Mechatronics Trainer Kit (includes basic sensors, actuators, PLC modules)
2.	Basic Sensors Set (LVDT, Potentiometer, Proximity Sensors, Thermistor, Hall Effect Sensor,
	LDR)
3.	Mechanical Actuators Set (Gears, Cams, Linkages)
4.	Electrical Motors (DC Motor, AC Motor, Stepper Motor, Servo Motor)
5.	Pneumatic Actuator Trainer (Air Cylinder and Valve Setup)
6.	Hydraulic Actuator Trainer (Piston-Cylinder System)
7.	PLC Trainer Board with I/O Modules and Programming Software
8.	Arduino / Raspberry Pi Starter Kit with Sensor and Actuator Modules
9.	Signal Conditioning Trainer Kit (Amplifiers, Filters, Converters)
10.	DC Regulated Power Supply, Multimeter, CRO (Cathode Ray Oscilloscope) or DSO (Digital
	Storage Oscilloscope)

IX. LIS	IX. LIST OF REFERENCE BOOKS							
Sr.No.	Title	Author	Publication					
1.	Mechatronics: Principles and Applications	Godfrey C. Onwubolu	Elsevier					
2.	Introduction to Mechatronics and Measurement Systems	David G. Alciatore, Michael B. Histand	McGraw-Hill					
3.	Sensors and Transducers	D. Patranabis	Prentice Hall India					
4.	Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering	W. Bolton	Pearson Education					
5.	Programmable Logic Controllers (PLC)	W. Bolton	Newnes					
6.	Industrial Automation and Control	Frank D. Petruzella	McGraw-Hill					
7.	Fundamentals of Pneumatics and Hydraulics	Majumdar	McGraw-Hill					
8.	Arduino Projects for Beginners	John Baichtal	Apress					

X. LIN	K OF LEARNING WEB RESOURCE
1.	NPTEL - Basic Electronics (IIT Kharagpur) — Fundamental concepts of electronics and
	introduction to mechatronics.
2.	<u>Industry 4.0 Concepts – YouTube</u> — Videos explaining Industry 4.0 basics and automation
	trends.
3.	Electronics Tutorials - Sensors — Overview of sensor types, working principles, and
	applications.
4.	YouTube - Working of PN Junction Diode — Detailed explanation of PN junction diode
	operation for sensor basics.
5.	<u>CircuitBread Tutorials</u> — Beginner-friendly lessons on electronic components and ICs.
6.	YouTube - Actuators Explained — Videos covering different types of actuators used in
	mechatronics.
7.	NPTEL - Pneumatics and Hydraulics Lectures — Basic course on pneumatic and hydraulic
	actuator systems.
8.	PLC Basics - YouTube Playlist — Tutorials on PLC structure, ladder logic programming, and
	applications.
9.	NPTEL - Automation and Control Systems — Course on automation, control systems, and PLC
	fundamentals.
10.	<u>IoT and Embedded Systems - NPTEL</u> — Introduction to IoT concepts and embedded system
	basics.
11.	<u>Arduino Basics Tutorials</u> — Official Arduino tutorials for beginners to learn microcontroller
	programming.
12.	Raspberry Pi for Beginners - YouTube — Introductory videos on Raspberry Pi hardware and
	projects.

XI. SU	XI. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE										
Unit	Unit Title	Aligned Learning I		R-	U-	A-	Total				
		COs	Hours	Level	Level	Level	Marks				
1	Introduction to Mechatronics	CO1	10	5	5	2	12				
2	Basic Sensors & Transducers	CO2	08	4	5	3	12				
3	Actuators	CO3	10	5	6	3	14				
4	PLCs	CO4	08	4	5	3	12				
5	Emerging Technologies	CO5	04	2	3	5	10				
		Grand Total	40	20	24	16	60				

Course outcome (Cos)	Progra	amme O	utcome	Programme Specific Outcomes (PSOs)						
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	2	2	1	2	2	3	2	2
CO2	3	3	2	3	1	2	2	3	3	2
CO3	3	3	3	3	1	2	2	3	3	2
CO4	3	3	3	3	1	3	2	3	3	3
CO5	3	2	2	3	2	3	3	3	3	3
Legends: - 3	3- High	2-Mo	oderate/	Medium	1-S	light/Lov	v 0	-None		