

Faculty of

Programme		BCA Honors (Artificial Intelligence & Machine Learning)				Branch	Computer Applications			
Semester]	I				Version	1.0.0.0			
Effective from Academic Year				2026-27		Effective for the batch Admitted in			June 2026	
Subject Cod	Subject Code U91B3DL			SUBJECT NAME		DIGITAL LOGIC				
Teaching scheme					Examination scheme (Marks)					
(Per week)	Lecture P (DT)		_	ractical Total			CE	SEE	Т	otal
	L	TU	P	TW						
Credit	4		-	-	4	Theory	50	50		100
Hours	4		-	-	4	Practical	-	-		-

Objective:

To provide students with a foundational understanding of the principles and techniques underlying digital systems.

Pre-requisites:

students have a solid foundation in mathematics, logic, and basic engineering principles, which are essential for comprehending the concepts covered in a Digital Logic course.

Course Outcomes:

Name of CO	Description
CO1	Translate various codes and number systems utilized in digital communication and computer systems.
CO2	Utilize circuits for converting codes and number systems, and analyze and contrast various logic families, the fundamental components of distinct logic gates, in terms of economic factors, performance, and efficiency.
CO3	Simplifying and Implementation at the Gate Level
CO4	Gain the capability to create and evaluate combinational logic circuits.
CO5	Develop the proficiency to create and assess sequential logic circuits.

Mapping of CO and PO

Cos	P01	PO2	P03	PO4	PO5	P06	P07	P08
CO1	3	3	2	3	2	1	1	1
CO2	3	3	2	3	2	1	1	1
CO3	3	3	2	3	1	1	1	1
CO4	3	3	3	3	1	1	1	2
CO5	3	3	3	3	1	1	1	2

Content:

Unit		Hrs.
1	Foundations of Digital Systems and Number Systems	12
	Digital system overview, Introduction to binary numbers, Number base conversion	
	techniques, Positional number system, Binary, Octal, Hexadecimal, and Decimal	
	number systems, Representation of signed numbers and signed magnitude,	
	Binary arithmetic operations: Addition, Subtraction, Multiplication, Division	
2	Boolean Algebra and Basic Logic Gates	12
	Introduction to Boolean algebra, Addition and Multiplication in Boolean algebra,	
	Binary logic functions exploration, Logic gates and Truth tables overview, Basic	
	logic gates: AND, OR, NOT, Universal gates: NAND and NOR, EX-OR and EX-NOR	
	logic gates, Boolean rules and Laws, De-Morgan's theorem	
3	Gate Level Minimization and Realization	12
	Realization of switching functions using logic gates, Canonical forms and	
	Standard forms, Sum of product and Product of sum forms, Realization of Boolean	
	functions using universal gates, The map method: Three-variable map and Four-	
	variable map, Logic expression simplification with grouping cell, Quine-McClusky	
	method, Realization of combinational circuits using truth tables	
4	Analysis and Design of Combinational Circuits	12
	Introduction to combinational circuits, Binary Adders: Half adder, Full adder,	
	Binary Subtractors: Half Subtractor, Full Subtractor, Parallel binary adder, Binary	
	comparator or Magnitude comparator, Decoders and Encoders, Multiplexers and	
	Demultiplexers, Parity generator and Parity checkers, Code converter	
5	Sequential Logic, Counters, and Registers	12
	Latches: Active High S-R Latch, Active Low S-R Latch, Gated S-R Flip-Flop, D-flip-	
	flop, Edge-triggered flip-flops: S-R FF, D-ff, J-K flip-flop, Race condition in flip-	
	flops, Master-slave J-K flip-flop, Introduction to counters: Three-bit, synchronous	
	counter, Four-bit asynchronous counter, ripple counter, Synchronous binary up	
	counters: Three-bit and Four-bit, Synchronous binary down counters: Three-bit	
	and Four-bit, Serial In and Serial Out register, Universal Shift register	
Praction	cal Content:	
_	plicable	
Text B	ooks:	

ons.					
Web References / MOOC / Certification Course					
<u>524</u>					

Question Paper Scheme:

Note for Examiners:

Q-1 Must be common from any topics from the syllabus.

https://www.geeksforgeeks.org/what-is-digital-logic/

Q-2 And onwards must be from specific topics and internal choice or option can be given.

Paper Structure:

SECTION-1

Q-1 Attempt any Five Out of Seven: each question must be 5 marks: (25 Marks) Questions must cover all possible sections (CO1, CO2, CO3, CO4, CO5).

SECTION-2

- Q-2 Must be from topics: Foundations of Digital Systems and Number Systems: (05 Marks)-C01
- Q-3 Must be from topics: Boolean Algebra and Basic Logic Gates: (05 Marks)-CO2
- Q-4 Must be from topics: Gate Level Minimization and Realization: (05 Marks)-CO3
- Q-5 Must be from topics: Analysis and Design of Combinational Circuits: (05 Marks)-CO4
- Q-6 Must be from topics: Sequential Logic, Counters, and Registers: (05 Marks)-CO5