				G A	ANPA	T UN	VIVERSIT	Ϋ́					
		FAC	ПП	Y OF	ENGI	NEEI	RING & T	ECHNO	LOGY				
Programme Master of Technology							Branch/Spec.	Computer Engineering (Artificial Intelligence)					
Semes	Semester I							1.0.0.0					
	Effective from Academic Year 2025-26							Effective for the Batch admitted in July 2					
Course Code 3CEAIPE105 Course Name							Data Science						
Teaching Scheme							Examination						
(Per w		cture (I		Practical		Total		CE	SEE	Total			
G III			TU	<u>P</u>	TW		TO I	50	50	100			
Credit		3 -		1	-	4	Theory	50	50	100			
Hours		3	-	2		5	Practical	30	20	50			
	quisites			D11.:1:	4								
	uction to p Outcome		ınıng,	Propabili	ıy								
			n of t	he course	the stud	ente wi	ll be able to:						
CO1								ne learning	including types of	Plearning			
	Understand the fundamental concepts and techniques of machine learning, including types of l data preprocessing, mathematical foundations, and performance evaluation.												
CO2	Apply regression and classification techniques to build predictive models, assess their effect												
	using appropriate evaluation metrics, and improve accuracy through hyperparameter tuning.												
CO3									ues, and				
	evaluate model performance using cross-validation and ensemble methods.												
CO4										vrangling			
	model development, performance improvement, and deployment.												
	y Syllabus					<u> </u>				T ++			
Unit						Conte	ent			Hrs.			
1	Introduction to Machine Learning:												
	The origins of machine learning-How machines learn - Machine learning in practice - Exploring and understanding state-of-the-art methods.												
2										<u> </u>			
2				Data Wra				liera Specia	l values, Obvious				
	inconsistencies, sampling, discretization, binarization, attribute transformation, Feature Imputation - Hot-Deck, Cold-Deck, Mean-substitution, Feature Engineering - Decompose,												
								_		05			
	Discretization - Continuous Features and Categorical Features, Reframe Numerical Quantities, Crossing, Feature Encoding - Label Encoding, One Hot Encoding, Feature									1			
	Normalization or												
	Scaling - Re-scaling, Standardization.												
3	Dimensi	•			-	, .	1	1 771	ъ				
				Selection Con					Decomposition,	02			
									analysis, Principal				
4	Component Analysis (PCA), Linear Discriminant Analysis (LDA). 4 Parametric methods & Nonparametric Methods:												
	Introduction, Maximum Likelihood Estimation: Bernoulli, binomial, Poisson distributions,												
							·			03			
	Gaussian Density, Nonparametric Density Estimation: Histogram Estimator, Kernel Estimator-K Nearest Neighbor Estimator, Generalization to Multivariate Data,												
	Nonparametric classification, Distance Based Classification, Outlier Detection.												
5	Regression:												
	Linear vs non-linear regression model, simple linear regression, multi linear regression,												
	polynomial regression, SVR, Random Forest, Decision Tree, performance measurement												
1	Matrix.												

6	Classification:								
	Logistic regression, Naive Bayes, K-Nearest Neighbors, Perceptron Learning, SVM-								
	Formulation, SVM-Interpretation & Analysis, SVMs for Linearly Non-Separable data, SVM Kernels, Subset Selection, Shrinkage Methods, Decision Tree, Regression trees, Stopping	10							
	Criteria & Pruning, Loss Function for Classification, Categorical Attributes, Multiway Splits, Instability & Smoothness & Repeated Subtrees.								
7	Clustering:								
,	Common distance measures, Hierarchical algorithms – agglomerative and divisive,	06							
	Partitioning algorithms – k-means & k-Medoids, CURE Algorithm, Density-based Clustering.	00							
8	Ensemble Methods:								
	Bagging & Committee Machines and Stacking, Boosting, Gradient Boosting, Random Forest.	05							
9	Machine Learning Hardware:								
	Machine Learning Hardware TensorFlow TPU, machine learning algorithm implementat								
	framework (open-source software libraries - Caffe, Torch, Theano), machine learning								
	algorithms on hardware like GPU, CPU and FPGA.								
10	Case Study	04							
	eal Content								
Practic	als, assignments and tutorials are based on the syllabus.								
Text B	ooks								
1	Pattern Recognition and Machine Learning, by C.M. Bishop, Springer.								
2	Machine Learning: A Probabilistic Perspective by K. P. Murphy, MIT Press.								
Refere	nce Books								
1	Modern Database Management, by Hoffer, Prescott and Mcfadden, Prentice Hall.								
2	Data Sciences, by Jain V.K., Khanna Publishing House, Delhi.								
3	Big Data and Hadoop, by Jain V.K., Khanna Publishing House, Delhi.								
4	Machine Learning, by Jeeva Jose, Khanna Publishing House, Delhi.								
5	Machine Learning, by Chopra Rajiv, Khanna Publishing House, Delhi.								
6	Deep Learning, by Ian Goodfellow, Yoshua Bengio and Aaron Courville, MIT Press.								
7	Data Mining Concepts and Techniques, by Jiawei Han and Jian Pei, Morgan Kaufmann Publishers								
8	Foundations of Machine Learning, by Mehryar Mohri, Afshin Rostamizadeh, Ameet Talwalkar, MIT								
	Press.	*							
9	Data Mining and Predictive Analytics, Wiley Series on Methods and Applications in Data Mining.								
10	Introduction to Machine Learning, by Ethem Alpaydin, MIT Press, Prentice Hall of India.								
11	Statistical and Machine-Learning Data Mining: Techniques for Better Predictive Modeling and								
	Analysis, by Bruce Ratner								
ICT/M	OOCs Reference								
1	https://nptel.ac.in/courses/106106139								
2	https://www.tensorflow.org/resources/learn-ml/basics-of-machine-learning								
3	https://developers.google.com/machine-learning/crash-course								
4	https://www.coursera.org/specializations/mathematics-machine-learning								

Mapping of CO with PO and PSO:														
	P O 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 1 0	P O 1 1	PS O1	P S O2	PS O3
CO1	3	2	1	2	2	0	0	0	0	1	1	3	2	3
CO2	2	3	2	2	3	0	0	0	0	1	2	2	3	3
CO3	2	2	3	3	3	0	0	0	1	1	2	2	3	3
CO4	2	2	3	3	3	1	0	0	1	2	3	1	3	3