

	system, Effect of control actions on transient response, Effect of Integral control on transient response, Effect of Zero on transient response. Examples to calculate various system performance parameters.	
6	STABILITY ANALYSIS: Characteristic equations of closed loop control systems and stability concept, Locus of complex conjugate roots, Poles and Zeros of transfer function. Routh and Hurwitz stability criterion, Relative stability. Examples to calculate stability and relative stability using above methods.	6
7	ROOT LOCUS TECHNIQUES: Basis of root locus, construction rules for sketching root locus. Examples to calculate stability using RLT.	5
8	FREQUENCY DOMAIN ANALYSIS: Frequency response of a control system, Frequency response of second order system, Performance specifications in frequency domain, Correlation between time response and frequency response, Normalized bandwidth, Polar Plots, Bode diagrams- concept of logarithmic plots, bode plots of standard terms, stability from bode plot, gain and phase margins. Examples to calculate system stability using Bode plot and Polar plot.	9
9	NYQUIST STABILITY CRITERION: Principle of argument, Nyquist criterion, Nyquist contour modification for poles on jw axis, Relative stability from Nyquist criterion, Gain and Phase margins. Example of Nyquist Stability criteria.	5
10	STATE VARIABLE ANALYSIS AND DESIGN: Introduction, Concept of State, State Variables and State Model, State model of Linear Continuous-Time System, Diagonalization, Solution of state equations, Concept of Controllability and Observability. Examples.	4

Practical content:

Term Work and Practical shall be based on the above syllabus.

Text Books:

1	Control Systems Engineering by I.J.Nagrath and M.Gopal
2	Modern Control Engineering by K.Ogata

Reference Books :

1	Control System Engineering by Prof. H.T. Kashipara
2	Elements of Control Systems by Sudhir Gupta
3	Automatic Control Systems by Benjamin C. Kuo and Farid Golnaraghi

ICT References :

1	https://nptel.ac.in/courses/108101037/1/2/3/4/5/6/.....
2	https://nptel.ac.in/courses/108102043/1/2/3/4/5/6/.....

Mapping of CO with PO and PSO:

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	2	2	0	0	0	0	0	0	0	0	0	0	0	0	1
CO2	2	3	1	1	0	0	0	0	0	0	0	0	3	2	0
CO3	2	0	1	0	1	0	0	0	0	0	0	0	2	2	0
CO4	0	2	2	1	1	0	0	0	0	0	0	0	3	2	0