GANPAT UNIVERSITY									
FACULTY OF DIPLOMA ENGINEERING									
Programme	Diploma in Ele	ctrical Engineering							
Semester	I		Version	1.0.0.0					
Effective from Academic Year 2025-26		2025-26	Effective for the batch Admitted in JULY 2025						
Course code	1EE1101	Course Name	Basics of Electrical Circuits						

I. TE	I. TEACHING-LEARNING AND ASSESSMENT SCHEME																	
		Lear	ning So	heme				Assessm	ent Scher	ne								
		Actu	al Cont	act				Theory				Practic	al			Based o	on SL	Total
Course	Course	Hrs./	Week					-										Marks
Type	Code				SLH	NLH	Credits	FA-	SA-	TOTAI	,	FA-	SA-	TOTAL	r	SLA		
		\mathbf{CL}	TL	LL				TH	TH			PR	PR	IOIA	L			
								MAX	MAX	MAX	MIN	MAX	MAX	MAX	MIN	MAX	MIN	
DSC	1EE1101	4		4	2	10	5	40	60	100	40	60	40	100	40	20	8	220

Abbreviation:	CL- Classroom Learning	TL - Tutorial Learning	LL - Laboratory Learning
	SLH - Self Learning Hours	NLH - Notional Learning Hours	SLA - Self Learning Assessment
	FA - Formative Assessment (To	erm work +Mid Sem Exam +Attendance)	SA - Summative Assessment

II. PRE-REQUISITES

Basic knowledge of Physics.

III. INDUSTRY / EMPLOYER EXPECTED OUTCOMES

The purpose of this course is to help the student to learn about the basic concepts related to electrical engineering.

IV. COURSE LEARNING OUTCOMES

At the end of the course, students will be able to achieve the following course learning outcomes:

- **CO1.** Identify electrical parameters with its characteristics.
- CO2. Able to learn the concept of AC system.
- CO3. Connect various basics circuits for measurement of different parameters like current, voltage, power etc.
- CO4. Understand concept of Dielectric and Capacitive circuits.
- CO5. Understand concept of Electrical and Magnetic circuits.

V. THEORY L	EARNING OUTCOMES ANI	V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT:						
Name of Unit	Theory Learning	Learning Content mapped with	Marks	Hours				
	outcomes (TLO's) aligned	Theory Learning outcomes (TLO's)						
	to CO's	& CO's						
Unit-1	TLO 1.1 History of	1.1 History of Electricity with its basic	12	12				
Basics of	Electricity. Define the	terms- Charge, Current, Potential,						
Electrical	various electrical parameters	voltage, power, Energy Electrical						
Engineering	TLO 1.2 Identify the	Resistance and its Unit, Ohms law:						
	commonly used materials	applications and limitations Specific						
	and components used in	Resistance and its unit. Parameters						
	electrical engineering	affecting the resistance, Effect of						
	TLO 1.3 Define the terms	temperature on resistance and						
	work, power and energy	temperature co-efficient, potential						
	TLO 1.4 Understand about	difference; EMF						
	mechanical and electrical	1.2 Conductors, Insulators,						
	Units.	semiconductors, capacitors and						
	TLO 1.5 State joules law	inductors.						
	and its applications.	1.3 Definitions of Work, Power and						
		Energy (both electrical and						
		mechanical);						
		1.4 Joules law of heat and problems						
		on Heating						

Unit-2	TLO 2.1 Concepts of AC	2.1 Advantages and Limitations of AC	12	10
AC	System.	System.	12	10
Fundamentals	TLO 2.2 Explain generation	2.2 Principle of generation of		
	of alternating EMF.	alternating voltage		
	TLO 2.3 Define various	2.3 Cycle, Time period, Frequency,		
	terms regarding alternating	Amplitude, Instantaneous value,		
	quantity.	Average value, R.M.S. value, Form		
	TLO 2.4 Derive equation	factor, Peak Factor Phase and Phase		
	for RMS and average value	difference		
	of sinusoidal waveform.	2.4 Mathematical representation of		
	TLO 2.5 Mathematical	Alternating Quantity and its Addition,		
	operations of alternating	subtraction, multiplication, and		
	vector quantities	division by Analytical method.		
	TLO 2.6 Solve numerical	2.5 Simple Numerical based on AC		
	based on AC fundamentals	fundamentals		
Unit-3	TLO 3.1 Understand	3.1 Concept of Open circuit, closed	10	12
Concepts of	various types of circuits.	circuit, short circuits		
DC System	TLO 3.2 Calculate voltage	3.2 Definitions of node, branch, loop,		
	and current in the given	mesh.		
	resistive circuits using KCL	3.3 Kirchhoff's laws and simple		
	and KVL.	numerical.		
	TLO 3.3 Calculate voltage	3.4 Kirchhoff's Voltage and Current		
	and current of resistive	law (KVL and KCL).		
	circuits using Series and Parallel Rules.	3.5 Basics of Series and Parallel		
Unit-4	TLO 4.1 Define the terms	circuits with numerical problems.	12	12
Electrostatics	related to electrostatics	4.1 Electric charge, Laws of	12	12
&	TLO 4.2 Explain the	electrostatics, Electric field,		
Capacitors	working of capacitor and	Electrostatic induction, Electric flux,		
Capacitors	identify the different types	Flux Density, Electric, field		
	of capacitors and their	Intensity.		
	applications	4.2 Types of Capacitors, Capacitors		
	TLO 4.3 Calculate the	in series and parallel.		
	capacitance in electrical	4.3 Energy stored in a Capacitor.		
	circuits	23 1		
	TLO 4.4 Calculate the			
	energy stored in			
	Capacitors			
Unit-5	TLO 5.1 Magnetic circuit	5.1 Magnetic Circuit Terms; MMF,	14	14
Electro-	and related terms and laws	Magnetic Field Intensity, Flux, Flux		
magnetic	TLO 5.2 Define	Density, Permeability, Reluctance		
Induction	phenomenon of	5.2 Magnetic field of current carrying		
	electromagnetic induction	conductor, Right hand rule, cork		
	TLO 5.3 State and apply	screw rule		
	Faraday's law, Lenz's law,	5.3 Electromagnetic Induction.		
	Fleming's right-hand rule,	5.4 Faraday's law, Lenz's law,		
	Fleming's left-hand rule TLO 5.4 Differentiate	Fleming's right-hand rule for Generators, Fleming's left-hand rule		
	Statically and dynamically	for Motors.		
	induced EMF, self	5.5 Statically and dynamically		
	and mutual inductance	induced EMF.		
	TLO 5.5 Identify the	5.6 Inductance: Self and Mutual		
	different types of	inductance.		
	inductor and explain its	5.7 Types of Inductors.		
	applications	5.8 Energy stored in Magnetic field.		

	ΓLO 5.6 Calculate the	5.9 Hysteresis Loop	
e	energy stored in		
r	magnetic field		
	FLO 5.7 Study about		
l I	Hysteresis losses from B-H		
	curve.		

VI. L	VI. LABORATORY LEARNING OUTCOME AND ALIGNED PRACTICAL								
Sr. No.	Practical/Laboratory Learning Outcome (LLO)	Practical Titles	Relevant COs						
1	LLO 1.1 Basic terms of electrical circuits.	Study about the various terms of electrical circuits, like Charge, Current, Potential, voltage, power, Energy Electrical Resistance with its Unit.	CO1						
2	LLO 2.1 Verify Ohm's Law.	Study and verify the ohm's law.	CO1						
3	LLO 3.1 Basic operation of laboratory CRO.	Study the construction and working of CRO.	CO2						
4	LLO 4.1 Application of CRO for measurements of various electrical parameters.	Use CRO to measure peak value, RMS value, Period, and frequency of alternating quantity.	CO2						
5	LLO 5.1 Operation of different electrical meters for measurement of power.	Measure current and voltage in each linear electrical circuit.	CO1						
6	LLO 6.1 Verify equivalent resistance equation for series circuit.	Connect resistances in series to get required effective resistance and verify.	CO3						
7	LLO 7.1 Verify equivalent resistance equation for parallel circuit.	Connect resistances in parallel to get required effective resistance and verify.	CO3						
8	LLO 8.1 Verify equivalent capacitance for series connection of capacitors.	Connect capacitors in series to get required effective capacitance and verify.	CO4						
9	LLO 9.1 Verify equivalent capacitance for parallel connection of capacitors.	Connect capacitors in parallel to get required effective capacitance and verify.	CO4						
10	LLO 10.1 Verify Series-Parallel combined circuits.	Connect resistances in parallel and series to get required effective resistance and verify.	CO3						
11	LLO 11.1 Verify Series-Parallel combined circuits.	Connect capacitors in parallel and series to get required effective capacitance and verify.	CO4						
12	LLO 12.1 Evaluation of Kirchhoff's Current Law.	Measure current in a particular branch of the given electrical circuit using Kirchhoff's Current Law.	CO3						
13	LLO 13.1 Evaluation of Kirchhoff's Voltage Law.	Measure voltage drops in a closed loop of the given electrical circuit using Kirchhoff's Voltage Law.	CO3						
14	LLO 14.1 Comparison of B-H characteristics for different magnetic materials.	To study about Hysteresis Loop.	CO5						

VII. SUGGESTED MICRO PROJECT / ASSIGNMENTS / ACTIVITIES FOR SELF LEARNING / SKILL DEVELOPMENT (SELF LEARNING)

- Collect an Information about the different types of Capacitors.
- Analyse the different series-parallel connections of Capacitors and effect of equivalent Capacitance.

- Collect an Information about different types of ferromagnetic, magnetic, and dielectric materials.
- Analyse the B-H curve of different magnetic materials.
- Collect an Information about the different types of Resistors.
- Analyse the different series-parallel connections of Resistors and effect of equivalent resistance.

Mini projects

- Compare energy stored in capacitors connected in series vs. parallel under the same voltage conditions.
- Light-Sensitive LED (Auto Night Lamp). (Learn how resistance varies with light and how to use transistors as switches.)
- Voltage Divider Circuit. (Understand Ohm's Law and voltage division.)

VIII.	VIII. LIST OF INSTRUMENTS / EQUIPMENT / TRAINER BOARD					
1	Ammeter: 0A-1A/0A-5A/0A-10A					
2	Voltmeter: 0V-50V/0V-150V/0V-300V/0V-500V					
3	Wattmeter: 0-1000W(5A/10A,300V/600V)					
4	Multimeter					
5	CRO					
6	Choke coil: 0- 80 mH, variable choke coil					
7	Single phase variac: 0-300V/ 1KVA					

IX. LIS	T OF REFERENCE BOOKS		
Sr.	Title	Author	Publication
No.			
1	A text book of Electrical Technology Volume-I (Basic Electrical Engineering)	B. L. Theraja & A.K. Theraja	S. Chand and Co., New Delhi, 23 edition or Latest edition (ISBN: 9788121924405)
2	Elements of Electrical Engineering	U.A. Patel	Atul Prakashan, Ahmedabad 2010 edition or latest edition
3	A Course in Electrical Technology Vol. I	J.B. Gupta	S.K. Kataria & Sons, 2012 or latest edition
4	Fundamentals of Electrical Engineering	Tarlok Singh	S. K. Katariav & Sons, New Delhi, Latest edition (ISBN: 9789350140680)
5	A text book of Electrical Engineering	S.L. Uppal	Khanna Publishers

X. LIN	I. LINK OF LEARNING WEB RESOURCE						
1	https://nptel.ac.in/courses/108/105/108105112/						
2	https://nptel.ac.in/courses/108/105/108105053/						
3	https://lectures.gtu.ac.in/						
4	https://circuitglobe.com/						
5	https://www.electrical4u.com/electrical-engineering-articles/basic-electrical/						
6	www.khanacademy.org						

XI. SU	XI. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE									
Unit	Unit Title	Aligned	Learning	R-	U-	A-	Total			
		COs	Hours	Level	Level	Level	Marks			
1	Basics of Electrical Engineering	CO1	12	4	4	4	12			
2	AC Fundamentals	CO2	10	4	5	3	12			

3	Concepts of DC System	CO3	12	2	4	4	10
4	Electrostatics & Capacitors	CO4	12	2	5	5	12
5	Electromagnetic Induction	CO5	14	4	5	5	14
		Grand Total	60	16	23	21	60

XII. COs AND POs AND PSOs MAPPING										
Course outcome (Cos)	Programme Outcomes (POs)							Programme Specific Outcomes (PSOs)		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3
CO1	3	2	1	2	3	2	0	3	2	1
CO2	3	1	3	3	0	3	1	2	3	1
CO3	3	3	1	2	0	1	3	3	2	3
CO4	2	2	3	0	1	3	2	1	3	2
CO5	3	1	2	0	3	2	2	3	1	2
Legends: - 3- High		2-M	2-Moderate/Medium			1-Slight/Low 0				