GANPAT UNIVERSITY								
	FACULTY OF DIPLOMA ENGINEERING							
Programme	Programme Diploma Engineering in Mechanical/Mechatronics/Automobile/Chemical/Petrochemical Technology/ Civil/ Electrical/Computer/Information Technology/Agriculture/Electronics & Communication							
Semester	I & II			Version	1.0.0.0			
Effective from Academic Year 2025-26 Effective for the batch Admitted in JULY 2						JULY 2025		
Course code	1BS1102		Course Name	Applied Physics				

I.TEA	I.TEACHING-LEARNING AND ASSESSMENT SCHEME																	
Learning Scheme Assessment Scheme																		
Course	Course		l Conta s./Weel						The	ory			Pract	ical		Based	on SL	T-4-1
Type	Code	CL	TL	LL	SLH	NLH	Credits	FA- TH	SA- TH	тот	AL	FA- PR	SA- PR	тот	AL	SL	ιA	Total Marks
								MAX	MAX	MAX	MIN	MAX	MAX	MAX	MIN	MAX	MIN	
DSC	1BS1102	2	-	2	0	4	2	40	60	100	40	30	20	50	25	0	0	150

Abbreviation:	CL- Classroom Learning	TL - Tutorial Learning	LL - Laboratory Learning
	SLH - Self Learning Hours	NLH - Notional Learning Hours	SLA - Self Learning Assessment
	FA - Formative Assessment (To	erm work +Mid Sem Exam +Attendance)	SA - Summative Assessment

II. PRE-REQUISITES

Basic knowledge of science.

III. INDUSTRY / EMPLOYER EXPECTED OUTCOMES

Ability to apply principles of mechanics, thermodynamics, optics, electricity, and magnetism in technical and engineering contexts. Use physics-based reasoning and calculations to solve real-world engineering problems (e.g., energy efficiency, motion analysis, material properties). Operate and interpret data from basic laboratory instruments (vernier caliper, micrometer screw gauge, ammeter, voltmeter, etc.).

IV. COURSE LEARNING OUTCOMES

At the end of the course, students will be able to achieve the following course learning outcomes:

- **CO1.** Apply principles of measurement and error analysis using standard instruments (Vernier Callipers, Micrometre Screw Gauge) to perform accurate physical measurements.
- **CO2**. Demonstrate an understanding of mechanics by analyzing linear, circular, and rotational motion, applying Newton's laws, and solving problems related to work, energy, and power
- **CO3.** Explain the fundamental concepts of heat and thermodynamics, including modes of heat transfer, temperature scales, thermodynamic processes, and relevant laws.
- **CO4.** Analyse properties of liquids and fluid dynamics, including surface tension, viscosity, Reynolds number, and Stokes' law, and apply them to real-world situations.
- **CO5.** Interpret the principles of electricity and optics by applying Coulomb's law, Ohm's law, resistive networks, laws of reflection/refraction, and wave phenomena (dispersion, interference, and polarization).

V. THEORY LEARNING OUTCOMES AND ALIGNED COURSE CONTENT:							
Name of Unit	Theory Learning	Learning Content mapped with	Marks	Hours			
	outcomes (TLO's) aligned	Theory Learning outcomes (TLO's)					
Unit-1	to CO's TLO1.1:	& CO's 1.1	8	4			
Unit-1 Unit and	Explain the need for	System of units (FPS, CGS, MKS, SI	ð	4			
Measurement	standardization of units and	system), Derived physical quantities					
Wicasui cinent	the advantages of the SI.	and their units.					
	system.	SALU VII SIII SIII SII SII SII SII SII SII S					
	TLO1.2:	1.2.					
	Describe the construction and	Measuring Instruments:					
	working principle of Vernier	(1) Vernier Callipers.					
	Calipers.						
	TLO1.3: Explain the principle and	1.3					
	structure of a Micrometre	(2) Micrometre Screw Gauge.					
	Screw Gauge.						
	TLO1.4:	1.4					
	Compute absolute, relative,	Errors in measurements					
	and percentage error in						
	physical measurements.						
TI 14 0	TEL CO. 1		10				
Unit-2	TLO2.1:	2.1	10	5			
Motion, Work And Energy	Define and differentiate between displacement,	Linear motion, velocity, acceleration, force. Linear momentum and impulse					
And Energy	velocity, and acceleration in	of force.					
	linear motion.	of force.					
	TLO2.2:	2.2					
	Analyse conditions for	Newton's first law of motion.					
	equilibrium and motion						
	using the First Law.						
	TLO2.3:	2.3					
	State and apply newton's	Newton's second law of motion,					
	second law of motion, to determine force, mass, or	Newton's third law of motion.					
	acceleration, differentiate						
	between action and reaction						
	forces and describe their						
	mutual interaction.						
	TLO2.4:	2.4					
	Explain angular, velocity	Circular motion, angular velocity,					
	and angular acceleration;	angular acceleration, centripetal and					
	relate them to linear velocity	centrifugal force.					
	and acceleration. TLO2.5:	2.5					
	Solve basic problems	Work, energy, kinetic energy,					
	involving work, energy, and	potential energy, power,					
	power in mechanical	Work energy theorem.					
	systems.						

Unit-3	TLO3.1	3.1	10	5
Heat And	Explain the three modes of	Heat conduction, heat convection and	10	3
Thermodynamic	heat transfer: conduction,	heat radiation.		
	convection, and radiation.	neat radiation.		
	TLO3.2	3.2		
	Define and differentiate	Thermal conductivity, Heat capacity		
	between heat capacity and	and specific heat.		
	specific heat capacity.	and specific fieut.		
	TLO3.3	3.3		
	Identify and different	Units of temperature and equations		
	temperature scales.	of their interrelation, kelvin		
	arrangement.	temperature scale.		
	TLO3.4	3.4		
	State and explain the zeroth	Zeroth law of thermodynamics, First		
	law of thermodynamics and	law of thermodynamics.		
	its relevance to thermal	law of mornious names.		
	equilibrium.			
	TLO3.5	3.5		
	Explain the physical	Isothermal, isobaric, isochoric and		
	significance and examples	adiabatic process, linear thermal		
	of each thermodynamic	expansion		
	process.			
Unit-4	TLO4.1	4.1	12	6
Surface tension	Define and explain ionic	Cohesive and adhesive forces,		
and Fluid	bonds, including their	molecular range, definition, dimension		
dynamics	formation through electron	and SI unit of surface tension.		
	transfer, and give suitable			
	examples.			
	TLO4.2	4.2		
	Explain the phenomenon of	Angle of contact and capillarity, shape		
	capillary action and its	of liquid meniscus in a capillary tube.		
	applications.			
	TLO4.3	4.3		
	Explain how temperature	Formula of surface tension, effect of		
	and impurities affect the	impurity and temperature on surface		
	surface tension of a liquid.	tension.		
	TLO4.4	4.4		
	Differentiate between	Viscosity, streamline flow and		
	streamline (laminar) and	turbulent flow of a fluid.		
	turbulent flow with			
	examples.			
	TLO4.5	4.5		
	Apply Reynolds number to	Reynolds number, Newton's formula		
	predict the nature of flow.	for viscous force.		
	TLO4.6	4.6		
	State Stokes' Law and	Co-efficient of viscosity, stokes law		
	derive the expression for	and terminal velocity.		
	viscous drag on a spherical			
	body.			

Unit-5	TLO5.1	5.1	10	5
Static and	Define electric charge and	Introduction, electric charge,	10	
Dynamic	explain its basic properties	quantization of charge.		
Electricity	(conservation, additivity,	5.2		
	and quantization).	Coulomb's law, electric field and		
	TLO5.2	electric field lines.		
	State and apply coulomb's			
	law for the force between	5.3		
	two point charges.	Electric potential, electric current,		
	TLO5.3	ohm's law.		
	Define electric potential and			
	potential difference with	5.4		
	relevant units.	Electrical resistivity and		
	TLO5.4	conductivity.		
	Define resistivity and			
	conductivity along with	5.5		
	their SI units.	Series and parallel connections of		
	TLO5.5	resistors.		
	Derive formulas for			
	Equivalent resistance in			
	series and parallel			
	combinations.			
Unit-6	TLO6.1	6.1	10	5
Optics	Explain characteristics of	Types of waves, (progressive,		
_	each type of wave with	stationary, mechanical, non-		
	relevant examples.	mechanical, transverse, longitudinal).		
		Frequency, wavelength, periodic time		
		and their relations.		
	TLO6.2	6.2		
	Describe the general	Properties and applications of		
	properties of electromagnetic	electromagnetic waves (ordinary light,		
	waves and their types.	LASER) and sound waves (ultrasonic		
		wave, audible wave).		
	TLO6.3	6.3		
	State and explain the laws	Reflection, refraction, Snell's law,		
	of reflection and refraction.	absolute refractive index, relative		
		refractive index, total internal,		
	TV Oc.	reflection, critical angle,		
	TLO6.4	6.4		
	Explain dispersion of light	Dispersion, Polarization, Interference		
	through a prism and its	of light.		
	application in spectroscopy.			
	TLO6.5	6.5		
	Apply Sabine's formula to	Reverberation, Reverberation time,		
	calculate reverberation time	Sabine's formula, echo, absorption		
	in enclosed spaces.	coefficient.		

VI. L	ABORATORY LEARNING OUTCOM	IE AND ALIGNED PRACTICAL	
Sr. No.	Practical/Laboratory Learning Outcome (LLO)	Practical Titles	Relevant COs
1	LLO1.1 Perform accurate linear measurements (external, internal, and depth) of given objects using Vernier callipers.	Study of linear measurement by vernier calliper.	CO1
2	LLO 2.1 Determination of Density of a Liquid using Specific Gravity Bottle	Use a micrometre screw gauge to measure small dimensions precisely.	CO1
3	LLO 3.1 Calculate the refractive index of a prism based on experimental data.	Study of refractive index of prism using spectrometer.	CO2
4	LLO 4.1 Determine the gravitational of a simple pendulum for various lengths.	Measurement of gravitational acceleration using simple pendulum.	CO2
5	LLO 5.1 Calculate the spring's force constant using Hooke's law.	Study of force constant of elastic spring.	CO4
6	LLO 6.1 Set up a circuit to measure current and voltage.	Measurement of resistance using Ohm's law.	CO5
7	LLO 7.1 Calculate the viscosity coefficient of the given liquid.	Determination of viscosity of fluid.	CO5
8	LLO 8. 1 Balance a Wheatstone bridge circuit to measure an unknown resistance.	Measurement of unknown resistance using Wheatstone bridge.	CO5
9	LLO 9.1 Calculate and interpret the surface area to volume ratio and its physical significance.	Study of SA/V ratio of simple objects.	CO6
10	LLO 10.1 Use a capillary rise method to measure surface tension.	Determination of surface tension of a liquid.	CO6

VII. SUGGESTED MICRO PROJECT / ASSIGNMENTS / ACTIVITIES FOR SELF LEARNING / SKILL DEVELOPMENT (SELF LEARNING)

Activities For Self-Learning:

- Measure and compare the dimensions of various household objects using Vernier callipers and micrometre screw gauge.
- Collect Information about Various Boiler used in Thermal power plant. Write its Specification and compare to each other.
- Measure household electrical consumption and suggest ways to reduce it.
- Prepare a PPT on applications of lasers in engineering fields.
- Write a report on the use of ultrasonic waves in industry and medicine.
- Prepare a chart showing SI units and their physical significance with real-life examples.

Mini projects:

- Create a working model or simulation to demonstrate types of motion.
- Investigate the change in surface tension of soap solution with concentration.
- Use simulations (PhET, OLabs) to virtually perform physics experiments.

VIII.	LIST OF INSTRUMENTS / EQUIPMENT / TRAINER BOARD
1	Simple Pendulum Setup For measuring acceleration due to gravity.
2	Spring and Weight Set.
3	Prism with Spectrometer.
4	Ohm's Law Apparatus.
5	Experimental setup of heat exchanger.
6	Independently temperature and pressure measuring instruments.

IX. LIS	X. LIST OF REFERENCE BOOKS									
Sr. No	Title	Author	Publication							
1	Engineering Physics	H.K. Malik & A.K. Singh	Tata McGraw-Hill							
2	Applied Physics for Polytechnic Students	M.N. Avadhanulu & P.G. Kshirsagar	S. Chand							
3	Practical Physics	S.L. Gupta & V. Kumar	Pragati Prakashan							
4	Fundamentals of Physics	Resnick, Halliday & Wiley Walker								
X. LIN	K OF LEARNING WEB RESOURCE									
1	https://www.coursera.org/browse/physical-scie	ence-and-engineering/physics	s-and-astronomy							
2	https://ndl.iitkgp.ac.in									
3	https://vlab.amrita.edu Boiler.aspx									
4	https://ocw.mit.edu/courses/physics/									

	XI. SUGGESTED WEIGHTAGE TO LEARNING EFFORTS & ASSESSMENT PURPOSE										
Unit	Unit Title	Aligned COs	Learning Hours	R- Level	U- Level	A- Level	Total Marks				
1	Unit And Measurement	CO1	4	3	3	2	8				
2	Motion, Work And Energy	CO2	5	3	3	4	10				
3	Heat And Thermodynamics	CO3	6	3	4	3	10				
4	Surface Tension And Fluid Dynamics	CO3	5	3	4	5	12				
5	Static And Dynamic Electricity	CO4	5	4	3	3	10				
6	Optics	CO5	5	3	4	3	10				
		Grand Total	30	19	21	20	60				

XII. COs Al	XII. COs AND POs AND PSOs MAPPING											
Course outcome (Cos)	Programme Outcomes (POs)							Program	me Specific (PSOs)	Outcomes		
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PSO1	PSO2	PSO3		
CO1	3	3	2	1	1	3	1					
CO2	3	3	3	3	2	2	2					
CO3	3	3	3	2	2	2	2					
CO4	3	3	2	2	2	2	1					
CO5	3	3	3	1	2	3	1					
Legends: - 3	Legends: - 3- High 2-Moderate/Medium 1-Slight/Low 0-None											