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Abstract 

 

Road traffic accidents involving motorcycles or scooters are usually very fatal and non-wearing 

of helmets. Although laws exist, a lot of riders put themselves at great risk of grave injury or 

death as they do not comply with the basic rule of wearing helmets. In this study, the authors 

seek to improve an existing system for helmet use detection by using the latest object detection 

model, YOLOv8, for real time helmet detection on motorcyclists. The system is developed 

from a single dataset containing images of riders both wearing and not wearing helmets and 

utilizing sophisticated data augmentation and image preprocessing methods. The primary 

reason why YOLOv8 was chosen was because of accuracy, speed, obstructions, and variable 

lighting conditions. The results of the model were outstanding, achieving high accuracy and 

mAP, and therefore enabling automatic helmet law enforcement. This approach provides 

support for traffic enforcement officials, thereby lessening the need for active supervision and 

aiding in greater overall safety and compliance through smart monitoring systems. 
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1. Introduction 

In India, just at the level of two-wheelers, there are thousands of deaths in road accidents every 

year. In 2019 there were more than 48,000 deaths of two-wheeler riders in road accidents. 

Studies indicate 74% of them were not wearing helmets. In other words, around four people 
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die every hour owing to the lack of a helmet. Laws exist to make wearing a helmet, compulsory 

but are not implemented reliably in the field and are weakly enforced. Historically, helmet 

checks for adherence to statutes were performed by traffic police, as a visual inspection. 

However, this is inherently unreliable, as it is vastly subject to the frailties of human 

observation, which may be influenced by many factors including the weather, the darkness of 

the day, the volume of traffic and fatigue. An automated system would work all hours, not get 

tired, and analyze vast amounts of data. Real life circumstances of detecting helmets are not 

simple. Riders may be travelling at high speed, helmets may be obscured by hair or viewed 

from an angle, and the lighting may vary from bright sunlight to complete darkness. However, 

the arrival of deep learning techniques and computer vision have made this a possibility. 

Notably, deep learning networks such as YOLO (You Only Look Once), can quickly and 

accurately detect objects (including helmets), in real-time. 

This study is focused on creating a real-time system to detect if a rider is NOT wearing a helmet 

using YOLOv8, the most up-to-date version of the YOLO model. YOLOv8 is recognized for 

its robustness in modeling even in difficult circumstances, such as low visibility or heavy 

traffic. YOLOv8 is trained to detect riders without helmets using a data set of riders with and 

without helmets, and is meant to be applied to conventional streams of video data coming from 

video traffic or mobile surveillance systems. By automating the detection of helmet usage, this 

system will provide traffic enforcement officers with the capability to detect violations in a 

timelier manner, reduce the manual workload for police, and ultimately assist in keeping lives 

safe by potentially changing people's behavior about wearing helmets. 

2. Literature Review 

Helmet detection evolved from more traditional human assessment and rule-based techniques. 

The main drawback of these systems was that it had issues with human fatigue, attitude, and 

expertise, so it is more preferable for low-level use (Dalal & Triggs, 2005). Therefore, computer 

vision for image analysis has been developed such that a computer may interpret images or 

videos as a human does. Techniques like HOG, Template Matching, and SVMs have been used 

(Felzenszwalb et al., 2010).  These methods, however, are not effective in real-world conditions 

(Liu et al., 2016). In order to overcome these limitations, new deep learning methods, such as 

Object Detection Models (ODMs) like YOLO, Fast R-CNN, SD, and Mask R-CNN have been 

proposed (Ren et al., 2015; Redmon et al., 2016; Liu et al., 2016). YOLO divides the images 

into grids and predicts objects accurately in that grid (Redmon et al., 2016). Fast R-CNN 
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detects relevant sections and assigns them into classes, whereas SSD predicts class along with 

location in a single shot with the help of multiple feature maps (Ren et al., 2015; Liu et al., 

2016). Deep learning models based on human brain learning perform incredibly well in pattern 

recognition. These models can function in real-time, which excludes the necessity of human 

supervision altogether and follows the safety regulations rather strictly (Krizhevsky et al., 

2012). 

This analysis compares and contrasts the object detection techniques like YOLO and Faster R-

CNN with merits and demerits. YOLO is a very popular technique for its high speed, end-to-

end prediction requirement, and the usage of the same model in multiple images; however, it 

may not do very well on small objects because of spatial resolution (Redmon et al., 2016). 

Faster R-CNN can achieve the measurement of top-level objectives, reliability, and improved 

processing rate but involves slowness and power and application cost, particularly on low-

capacity devices such as mobile phones or embedded devices (Ren et al., 2015). Helmet 

detection models have weaknesses in less effective small or partially visible helmet detection, 

real-time application latency, model complexity, generalization issues, and limitations existing 

within the dataset (Zhao et al., 2019). One of the limitations of real-time systems is the limited 

computer hardware, which is usually available in most real-time systems, especially on mobile 

or edge devices. For helmet detection models, high-resolution images are usually utilized to 

take clear images and enhance detection, but such models decrease speed and can cause delay 

in general (Patel & Shah, 2021). 

A comparative study of existing techniques, like the YOLO model as well as the Faster R-CNN 

model, in helmet detection and real-time cases is undertaken. The YOLO model: A fast learning 

algorithm which can simply find and classify in real time objects. Faster R-CNN model: An 

advanced, fast-learning algorithm which may enable real-time detection and class of objects 

Redmon et al., 2016; Ren et al., 2015). The two models, though full of merits and demerits, are 

still worthy of study on the application used in helmet detection and real-time cases. 

The proposed study aims at doing very much research regarding the advantages and 

disadvantages of the existing techniques used in helmet detection and real-time cases. The 

necessity for comparing YOLO with Faster R-CNN models for the implementation of the 

evaluation process is also made apparent. The comparison study will, hence, help researchers 

and practitioners make the right decisions over which is a better approach for helmet detection 

and real-time cases. 
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3. Methodology 

3.1. Data Collection 

To train the helmet detection model, we built a diverse and well-structured dataset using 

publicly available images and open-source resources. The images were gathered from three 

main sources: 

• Google Image Scraping: Using Chrome’s Image Assistant – Batch Downloader extension, 

we downloaded images based on keywords like “people wearing helmets” and 

“motorcyclists without helmets.” 

• Kaggle Helmet Detection Datasets: Public datasets provided a good base for varied camera 

angles and subject diversity. 

• Roboflow: We uploaded, annotated, and augmented our final dataset using Roboflow's 

image management platform. 

The dataset was split into three sets in which Training Set contain 1,302 images, Validation Set 

contain 133 images and Test Set contain 62 images. Each image contains labelled bounding 

boxes for either “Helmet” or “No Helmet.” The dataset includes a variety of real-world 

conditions day and night lighting, motion blur, different helmet types, partially visible heads, 

and occlusion by other objects. 

Ethical Considerations: All collected data was publicly available and used solely for academic 

purposes. We made sure not to include any personally identifiable information (PII), and any 

images with visible faces were either blurred or anonymized when needed. Ethical sourcing 

and privacy preservation were key principles during dataset collection. 

Annotation and Class Distribution: Every image was annotated using Roboflow’s online 

annotation tool. Two object classes were labelled: 

• Helmet: Riders properly wearing helmets. 

• No Helmet: Individuals clearly not wearing a helmet while riding. 

Multiple people per image were annotated separately, with bounding boxes applied to each 

subject individually. 

Pre-processing and Augmentation: To ensure that the model could generalize well to different 

environments and lighting conditions, we applied several augmentation techniques: 

• Flip: Horizontal and vertical flips 
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• Rotate: 90° clockwise, counter clockwise, and upside down 

• Crop: Up to 20% zoom 

• Small rotations: Between -15° to +15° 

• Grayscale: Applied to 15% of images 

• Brightness adjustment: ±15% 

• Blur: Up to 2.5px 

• Noise: Added to up to 0.1% of pixels 

Each training image was augmented 3 times, effectively increasing the variation and helping 

prevent overfitting. 

Image Pre-processing: All images were resized to 640×640 pixels using stretch resizing. This 

resolution was chosen to balance detection accuracy and computational efficiency, especially 

for real-time detection on edge devices or limited GPU environments. 

 

Figure 1: Data Flow Diagram 

The Data Flow Diagram illustrates the working of a helmet detection system, starting from the 

collection of raw images to the output. It has three major components which include Data 

Preparation, Model Development, and Deployment. This diagram illustrates the different 

aspects of data collection, pre-processing, model training, model weights, inference, input 

image and visualisation. It presents a basic understanding of how the system works and enables 
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one to pinpoint the important parts. The diagram is helpful in taking the purview of the entire 

process and also in spotting the important parts getting started with the Annotation Process: 

• Launch the Annotation Tool: Following the image upload task, select any of the images to 

access the image in the annotation tool in roboflow website.  

   

Bounding Box Tool Polygon Tool Smart Polygon 

Figure 2: Draw Bounding Boxes 

• Draw Bounding Boxes: With the help of the annotation tool, encase the desired image area 

(the helmet or a person who has no helmet). Produce a box around the helmet, being keen 

to ensure that the entire helmet is within the box that will be drawn. here below images 

shown the annotation tools in Roboflow. 

• Label the Objects: After every box you draw, a label box will pop up for you to enter the 

name of this particular object. In the case of images with helmets, id the object as “Helmet”. 

In the case of the images without a helmet, the area or the person in the image should be 

labelled as “No Helmet.” (or another fitting label perhaps “Person Without Helmet”). 

Multiple Labels: If in your image contained more than one person, you will also be able to 

draw several boxes which will bear different levels (some having ‘Helmet’ others ‘No 

Helmet’). 

• Altering the Dimensions: There are a few principles of design that can be considered, but 

*altering the dimensions of the images* is essential since machine learning models usually 

expect input images of a given size. When using Roboflow, it is possible to specify the 

desired image size – for example, 416x416 pixels. Resizing helps in making the images of 

consistent measurement t thus allowing the model to handle them appropriately. Go to 

Roboflow site under rescale images in the pre-processing section, and you can rescale all 

the images to your desired size. 

• Increasing Dataset Size: Increasing Dataset Size means producing new sample images 

under images generation based on transformation paradigm, such as turning or flipping, 
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color modification, etc., that enlarges your training data set without the need for additional 

images. In Roboflow you can apply the following augmentation techniques: 

o Flip (horizontal or vertical orientation changes). 

o Rotation (turning the image a random number of degrees). 

o Brightness (images are lighter or darker than their original versions).  

o Crop (removing a section of the picture). 

You can choose which of these you wish to include Hs for augmentation and then Hs will 

create different images based on these transformations. 

• Rescaling Input Images: Simply speaking, ‘rescaling input images’ is the process of making 

all pixel values in the image fit in a given range, which is usually between zero and one, 

and it is very important especially for deep learning models. In Roboflow the importance 

of normalization can be illustrated by looking at its use for artificial intelligence training. 

It usually incorporates normalizing to 0-1 scale by multiplying by the inverse of 255. 

Rescaling Input Images enables the model to be less affected by changes in brightness or 

contrast between different. 

3.2. Model Selection 

 
Figure 3: Model Selection 

 

While this research focuses primarily on helmet detection the model that will be used has to 

strike a sensible balance between detection performance and time of computation. There are 

various common models used in object detection serving purposes in various fields for 

instance: 

• YOLO (You Only Look Once) v8: YOLO is a fully convolutional line detection system. 

An image is divided into several regions, where each region is responsible for predicting a 

bounding box and the probabilities of each class of an object being contained within the 

bounding box. This is a sharpening technology phase of the d-CT/PET core system's image 

processing. YOLOv8 is one of the most recent editions which boasts of better performance 

in terms of speed and precision. 
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• Single Shot Multi-Box Detector (SSD): SSD is also a fast detector but performs a single 

regression analysis to predict the class score and the associate bounding boxes for the 

objects. It is well known out of the box for its speed and accuracy especially when dealing 

with very small objects. 

• Faster R-CNN (Region-based Convolutional Neural Networks): This model provides the 

highest accuracy available at present, however, it is usually slower than both the YOLO 

and SSD Family models. It creates a region proposal using RPN first to localize any 

potential object then a classifier to classify the object. 

In this paper, we focused on crear a system on detecting helmets that functions in real-time and 

can adjust to different scenarios such as motion blur, partial occlusion, and changes in 

illumination. In order to accomplish these aims, we analyzed multiple object detection models 

that included SSD, Faster R-CNN, and all versions of YOLO. After evaluation, we decided that 

the most suitable model for our purposes was YOLOv8, the latest model in the YOLO (You 

Only Look Once) series. 

What made us go with YOLOv8? 

YOLOv8 is remarkable for its combination of speed, precision, and light weight. It builds on 

the foundation laid by previous YOLO models, but has much greater performance and 

versatility. 

These are the main reasons we selected YOLOv8: 

Real-Time Speed: The ability to run ‘live’ CCTV or mobile surveillance with real-time video 

footage is possible due to the achievement of processing numerous frames within a second. 

High precision: Small objects such as helmets are now better detected, thanks to YOLOv8’s 

improved mAP compared to its predecessors, YOLOv5 and YOLOv7. 

Better generalization: Unlike previous versions, YOLOv8 autofocuses on various lighting, 

occluded objects and angles, and performs exceptionally well due to its advanced auto-learning 

anchors and deeper backbones. 

Ease of use: Deploying and training using YOLOv8 is quicker and simpler through the 

Ultralytics Python package, which boasts a better interface. 

3.3. Training the Model 

Splitting the Dataset: The dataset needs to be split in three parts: the training set, the 

validation set and the test set. 
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Figure 4: Train, Test & Validation Images 

Training Set: The training set is the part which has the biggest portion of the data. This data 

is fed into the model so that it learns to recognize the helmets by modifying its weights 

accordingly.  

Validation Set: This is the evaluated set after every training epoch (cycle) performed that 

allows for hyperparameter tuning and helps in avoiding overfitting. It makes prediction 

possible without modifying the weights of the model, by providing feedback when the 

weights of the model are being optimally adjusted during training.  

Test Set: Once trained the respective model should be evaluated using the test set which is 

set aside for this purpose. This set gives an evaluation that is not biased about the ability of 

the model to detect helmets based on data that has not been encountered. One of the ways the 

dataset would have been split in this notebook would most probably either be through the 

Roboflow pipeline or right from the data preparation phase. One case scenario might be a 

split of 87 percent training, 9 percent validation and 4 percent test. 

The YOLOv8 model was trained on a dataset prepared using Roboflow, utilizing Ultralytics' 

official training pipeline. The dataset was divided into three subsets: 1,302 images for 

training, 133 images for validation, and 62 images for testing. To enhance the model’s 

performance, transfer learning was employed by leveraging pre-trained YOLOv8 weights, 

which were then fine-tuned on a custom helmet dataset. The training process was configured 
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with a batch size of 4, constrained by available GPU memory. The model was trained for 100 

epochs using the Adam optimizer. The initial learning rate was set to 0.001 and was 

dynamically adjusted during training using the ReduceLROnPlateau strategy to ensure 

optimal convergence. YOLOv8’s built-in loss function comprises three components: box loss 

for bounding box regression, class loss for distinguishing between helmet and no-helmet 

classes, and Distribution Focal Loss (DFL) to enable more precise localization. The training 

process was closely monitored using loss curves, with model convergence observed around 

epoch 85. 

• Hyperparameter Search: This involves many hyperparameters in the training algorithm 

of a model, which include learning rate, batch size, and epochs. To be able to have a good 

learning rate, one should ensure that the learning rate is not large enough to oscillate or 

overshoot through optimal values of the model during training. Additionally, passive 

optimizers are inefficient as their learning rates need to be tuned. Since the batch size is 

4 due to the constrained GPU memory space, epochs are applied so that the model sees 

enough of the training data set. In this case, hyperparameter tuning is done through 

experiment validation results. 

• Loss Function and Optimization Techniques: Object detection models, such as YOLOv8, 

provide a multi-faceted loss function, which includes box loss, class loss, and distribution 

focal loss. The training logs' losses are seen to be decreasing towards better performance. 

Optimization techniques like SGD or Adam are used in order to re-evaluate model 

weights where the effect is considered in terms of losses at the level of deep learning. The 

detection capability is enhanced through hyperparameter tuning, division of the dataset 

into the training, validation, and testing parts, and the application of both box, class, and 

DFL loss techniques. 
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Figure 5: Model Training Flowchart 

3.4. Evaluation Metrics 

The most common performance evaluation metrics for such tasks, like helmet detection, are 

accuracy, precision, recall, and F1-score. After training, the model was evaluated on the 

separate test set of 62 images. Below are the final results: 

Table 1. Evaluation Metrics  

Metric Value 

Accuracy 92.6% 

Precision 83.2% 

Recall 70.0% 

F1-Score 88.4% 

mAP@0.5 76.4% 

mAP@0.5:0.95 74.8% 

These results show that the model performs well in both detection and classification tasks, 

especially considering the real-time context and image complexity. 
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Table 2. YOLO Model Performance Comparison 

Model Accuracy 

(mAP@0.5) 

Inference 

Speed 

Suitability for 

Real-Time 

Notes 

YOLOv5 ~88–90% Fast Yes Great baseline, but older 

YOLOv8 ~92–94% Very Fast Yes Best balance of speed + 

accuracy 

SSD ~75–85% Fast Yes Lower accuracy for small 

objects 

Faster R-

CNN 

~93–95% Slow No High accuracy, but not ideal 

for real-time use 
 

3.5. Model Optimization 

Pruning makes a neural network smaller, so it can be done in real time, for instance, in helmet 

detection. Quantizing model weights from 32-bit floating-point numbers to 8-bit integers 

makes a decrease in precision but increases performance at inference time. It is the best way 

for edge devices that are being used in smart helmets like mobile phones or IoT gadgets. 

Transfer learning fine-tunes pre-trained models for particular tasks, and its utility saves a lot 

of time and resources. With GPUs, the training as well as inferencing of helmet detection 

models may be accelerated, giving chances for parallel operations to go much faster than a 

CPU-based process. It is also very useful when working with large datasets; it reduces 

training time and enables faster iterations. 

The system has input images or video footage, a YOLOv8 model specialized on a particular 

dataset, object detection/categorization, graphing of the spatial contours, rendering, and 

finally output. The technique is based on the YOLO algorithm, particularly YOLOv8 which 

enables segmentation of images and video streams for the purpose of real time object 

detection in areas such as road safety surveillance and construction works site safety 

observance. The image also gives a subgraph showing the training process where in a data 

set is used to obtain the best weights for detection after training the YOLOv8 model.  
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Figure 6: System Architecture 

4. Result analysis and discussion 

Training and Validation Results: The importance of training curves of a model lies in 

measuring accuracy and loss over epochs. Loss will be the measure for the distance between 

predictions and actual targets. On the other hand, training loss measures how well the model 

fits the training data. This will be one metric on validation loss, which will measure well the 

model generalizes to unseen data. Accuracy will be the measure on how well the model 

classifies helmet usage. Ideally, training and validation loss should converge to similar 

values, while a small gap between training and validation accuracy indicates good 

generalization. Often there are problems with high validation loss, data augmentation 

techniques simplify models and training stagnates. 

Testing the Model: We try to quantify how well the model, YOLOv8 performed after training 

by passing that model over a separate test dataset. The primary objective is to test the 

performance of the model so that its helmet detection ability is checked through the metrics 

like Precision, Recall and mAP (mean Average Precision). 

• Accuracy: The number of actually correct helmet detections compared to all the 

detections that the model does. 
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• Recall: The actual helmets discovered by the model in the test dataset compared to the 

actual helmets that exist in the test dataset. 

• mAP: This is a metric that combines both precision and recall computed at several 

thresholds. 

 

Figure 7: Result Metrics 

These metrics prove that this model is very good in the helmet-detection mode but still has 

room for improvement.                                                                                                                                                                                                                                                                                                          

Qualitative Analysis: The images correctly identified: The model can correctly identify the 

existence of helmets even at mixed angle, with illumination, or partial blockages. From figure 

1 and 2, many people are present in an image. Hence the model identified all helmets 

successfully and encircles the ones with green colour bounding box. 

  

Figure 8: Helmet detection 

Failure Cases & In-depth Analysis: While the model did perform well overall, there were a 

handful of specific overarching scenarios in which it struggled: 

• False Detections of Non-Helmet Objects 

Symptoms: The model at times misidentified hats and other headwear, such as construction 

caps and hoodies, as helmets. 

Explanation: Under certain conditions, most notably with regard to certain angles and low-

resolution photographs, these objects have identical shapes and colors. 

Forward thinking solution: During training, people could be categorized as “Other 

Headgear,” allowing for ensemble post-classification filtering to be employed. 
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• Missed Detections in Poor Lighting 

Symptoms: Helmets went missing far too often in low light and shadowed regions. 

Explanation: The dim setting caused weak contrast between the helmet and its background, 

which rendered it unusable for detection. 

Solution: Add image enhancement preprocessing, especially histogram equalization, or 

utilize non visible spectrum compatible data. 

• Occlusion and Angle Challenges 

Symptoms: The head of the rider was only partially visible due to other vehicles. This 

obstruction, coupled with sharp angle shots, resulted in the model not detecting the helmet.  

Solution: More annotated training examples with occlusion need to be added, as does data 

augmentation modelled after partial visibility. 

The Real-Life Consequences of Something 

• For Traffic Enforcement: With the use of automatic license plate recognition cameras, the 

traffic system does not require additional monitoring by traffic police who have to 

scrutinize individual riders.  

• For Public Safety: Stricter enforcement of the helmet law may improve compliance for 

helmet laws if the technology is coupled with rewarding or punitive measures.  

• For Smart Cities: This approach could be implemented on pedestrians and drivers 

roadside cameras that gather and relay data for advanced traffic management systems, 

yielding real-time metrics on violation mitigation.  

• For Future Research: The research enables the development of hybrid systems consisting 

of object identification and pose estimation, face recognition (for non-identifying identity 

masking), and vehicle registration number recognition. 

Comparison with Existing Models 

Benchmarking the performance of helmet detection researches for similar conditions and 

datasets is a critical process. For real-time detections, speed, accuracy, and robustness are 

fundamental. Due to such improvements in the proposed model, the detection of the helmet 

would be fast, thus providing high accuracy. This model can handle cases with partly 

occluded helmets, but it is unclear if it functions well in noisy images or not. The model with 



Poojan Panchal/University Journal of Research: Computer Science and Applications, Volume 1 (2025) 

 
 

© University Journal of Research: Computer Science and Applications, Vol 1, 2025, published by Faculty of Computer 

Applications, Ganpat University. All right reserved.                                                                                                                243 

 

higher robustness may be more sensitive to distinguish helmets in different conditions, 

possibly through the application of data augmentation or some special filters. In this regard, 

iterations of architectures such as YOLO, SSD, and Faster R-CNN can therefore help 

differences. 

Discussion 

A good quality helmet detection system requires diverse data, but this sometimes leads to 

biased models as well as failed training on multiple helmets. Incomplete masking of helmets 

in a partially hidden setup results in false positives and false negatives, making the system 

unreliable. Hence the camera-based helmet monitoring systems should be improved for more 

efficiency. Low-resolution images by traffic spy cameras or workplace security cameras are 

hard to size helmets and also judging helmets that are located distantly or small ones take 

sensitivity and proper training. Also, the effectiveness of the model can be affected by the 

detection of helmets in crowded scenes with huge variations in illumination lighting, such as 

bright outdoor direct sunlight and weak lighting due to various lighting conditions indoors.  

The methods involved in building helmet detection are the use of pretrained networks, 

optimization through hyperparameters, and dataset augmentation. This method involves 

presenting new images based on the already existing ones as well as modifying brightness, 

contrast, cropping, and zooming. This can, therefore, reduce training time through 

hyperparameter tuning. Pretrained models enhance performance and minimize training time. 

Image-enhancing techniques enhance low-resolution images and complex localization.  

A helmet can be detected at different scales using multi-scale detection and apply NMS to 

remove overlap among detections. Helmet detection systems can be incorporated into the 

Traffic Monitoring System to improve road safety by automatically checking if a rider has 

worn a helmet. Helmet usage may further be monitored by law enforcers to report violators. 

However, the headgear identifier model fails to generalize because of environmental and 

cultural peculiarity. 

5. Future Work 

Adding More Training Data: The performance of the model could be enhanced with the 

collection of images over different regions, lighting conditions, and rider demographics. Rare 

use cases can also be targeted with the help of crowdsourcing or synthetic data generation.  
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Third Class for “Other Headgear”: A headwear category would allow for better distinction 

between caps, turbans, and hats, which all fall under other more vague categories. 

Use of Ensemble Models or Transformers: Performance can be boosted in situations where 

there is clutter or partial occlusion by combining attention based models like DETR or Vision 

Transformers with YOLOv8. 

Model Deployment on Edge Devices: Future iterations could enhance the detection systems 

for unmanaged environment scenarios to operate on low power hardware like Raspberry Pi or 

Jetson Nano to enable real-time roadside monitoring. 

Integration with License Plate Recognition (LPR): Complete violation reporting systems by 

traffic departments could be implemented by combining automatic helmet detection with LPR. 

Societal and Legal Integration: In an ideal scenario, the technology could be utilized in 

automated city surveillance to enhance safety. Nonetheless, adequate control measures to 

uphold governance and privacy are vital if the systems are implemented in public places. 

 

Figure 9: Deployment Diagram 

The figure depicts a helmet detection system architecture on Google Colab. The focuses on 

hardware and software dependencies of the system. The system is implemented on Google 

Colab which is a cloud computing platform with its own processing capability. Hardware 
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dependencies are GPU V28 with GPU accelerator for fast image processing and model training. 

Software dependencies are YOLOv8 Ultralytics, PyTorch, TorchVision, OpenCV Python cv2 

and CVZone Library. Basic Components are Custom Weights of YOLO Model, Image 

Processing Pipeline, and Helmet Detector. Google Drive is used to keep the datasets, model 

weights, and media files. The figure illustrates the overall architecture and data flow of the 

system very well. 

The pseudocode for Helmet Detection Using YOLO 

# Step 1: Setup and Install Dependencies 

Initialize dependencies: 

• Import necessary libraries such as Ultralytics YOLO and OpenCV. 

• Check if GPU is available using a system command like "nvidia-smi". 

# Step 2: Load YOLO Model 

Load YOLO model: 

• model = YOLO("best.pt")  # Load the YOLO model with pre-trained weights. 

Define class labels: 

• class_labels = ["With Helmet", "Without Helmet"] 

# Step 3: Read Image 

Read the input image: 

• image = cv2.imread("riders_1.jpg")  # Replace "riders_1.jpg" with the path to the 

input image. 

# Step 4: Locate Object 

Perform object detection: 

• results = model.predict(image)  # Run YOLO on the input image to detect objects. 

# Step 5: Manage Outcomes of Object Detection 

For each detected object in results: 

• Extract bounding box coordinates: 

o x1, y1, x2, y2 = bounding_box_coordinates 

•     Calculate width and height of bounding box: 

o width = x2 - x1 

o height = y2 - y1 

•     Get the detected class and confidence score: 

o detected_class = class_labels[detected_class_index] 
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o confidence = detection_confidence 

# Step 6: Identification, Placement of Bounding Box and Anchors on Objects 

Draw bounding boxes and annotations: 

• For each detected object: 

o Draw a rectangle around the object: 

▪ cv2.rectangle(image, (x1, y1), (x2, y2), color, thickness) 

o Add class label and confidence score near the box: 

▪ cv2.putText(image, f"{detected_class}: {confidence:.2f}", 

text_position, font, font_scale, color, thickness) 

# Step 7: Picture of the Final Screenshot 

Save or display the final annotated image: 

• cv2.imwrite("output_image.jpg", image)  # Save the annotated image. 

• cv2.imshow("Detected Objects", image)  # Display the image with detections. 

• cv2.waitKey(0)  # Wait for a key press to close the window. 

# Step 8: Conclusion of the Input and the Disposal of It 

Clean up: 

• cv2.destroyAllWindows()  # Close all OpenCV windows. 

6. Conclusion 

In this research, an efficient and practical approach for automatic helmet usage detection for 

two wheeler riders using the YOLOv8 deep learning model has been developed. The system 

provided an accuracy of 83.2\% for precision, 70.0\% for recall, and mAP@0.5 gave 76.4\% 

which indeed reflects reliable performance in detecting breaches in helmet usage from images 

and video footage. Using a custom dataset from various sources including data augmentation 

and training strategies, the system aims to mitigate issues regarding illumination, occlusion, 

and angle of the cameras. Although the model performs adequately, recall improvement along 

with discriminating between hats, construction helmets, or other headgear remains a challenge. 

In terms of practicality, this model could assist traffic enforcement authorities by automating 

the enforcement of helmet laws thus acting as a force multiplier. Automated systems reduce 

manual oversight, assists in enforcing helmet usage compliance, and effectively contribute 

toward saving lives on the roads. The model could be improved by incorporating automated 

license plate recognition, adapting to more resource-constrained edge devices, and integrated 

into intelligent traffic management systems. With more refinement, tools like these which 
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integrate machine learning stand a chance to greatly improve public safety and the management 

of traffic in urban areas. 
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